Гамма распределение с параметром 1 2. Практика применения гамма-распределения в теории надежности технических систем. Области применения гамма-распределения

4. Случайные величины и их распределения

Гамма-распределения

Перейдем к семейству гамма-распределений. Они широко применяются в экономике и менеджменте, теории и практике надежности и испытаний, в различных областях техники, метеорологии и т.д. В частности, гамма-распределению подчинены во многих ситуациях такие величины, как общий срок службы изделия, длина цепочки токопроводящих пылинок, время достижения изделием предельного состояния при коррозии, время наработки до k -го отказа, k = 1, 2, …, и т.д. Продолжительность жизни больных хроническими заболеваниями, время достижения определенного эффекта при лечении в ряде случаев имеют гамма-распределение. Это распределение наиболее адекватно для описания спроса в экономико-математических моделях управления запасами (логистики).

Плотность гамма-распределения имеет вид

Плотность вероятности в формуле (17) определяется тремя параметрами a , b , c , где a >0, b >0. При этом a является параметром формы, b - параметром масштаба и с - параметром сдвига. Множитель 1/Γ(а) является нормировочным, он введен, чтобы

Здесь Γ(а) - одна из используемых в математике специальных функций, так называемая "гамма-функция", по которой названо и распределение, задаваемое формулой (17),

При фиксированном а формула (17) задает масштабно-сдвиговое семейство распределений, порождаемое распределением с плотностью

(18)

Распределение вида (18) называется стандартным гамма-распределением. Оно получается из формулы (17) при b = 1 и с = 0.

Частным случаем гамма-распределений при а = 1 являются экспоненциальные распределения (с λ = 1/ b ). При натуральном а и с =0 гамма-распределения называются распределениями Эрланга. С работ датского ученого К.А.Эрланга (1878-1929), сотрудника Копенгагенской телефонной компании, изучавшего в 1908-1922 гг. функционирование телефонных сетей, началось развитие теории массового обслуживания. Эта теория занимается вероятностно-статистическим моделированием систем, в которых происходит обслуживание потока заявок, с целью принятия оптимальных решений. Распределения Эрланга используют в тех же прикладных областях, в которых применяют экспоненциальные распределения. Это основано на следующем математическом факте: сумма k независимых случайных величин, экспоненциально распределенных с одинаковыми параметрами λ и с , имеет гамма-распределение с параметром формы а = k , параметром масштаба b = 1/λ и параметром сдвига kc . При с = 0 получаем распределение Эрланга.

Если случайная величина X имеет гамма-распределение с параметром формы а таким, что d = 2 a - целое число, b = 1 и с = 0, то 2Х имеет распределение хи-квадрат с d степенями свободы.

Случайная величина X с гвмма-распределением имеет следующие характеристики:

Математическое ожидание М(Х) = ab + c ,

Дисперсию D (X ) = σ 2 = ab 2 ,

THE PRACTICE OF APPLYING GAMMA DISTRIBUTION THE THEORY OF RELIABILITY OF TECHNICAL SYSTEMS

Ruslan Litvinenko

candidate of technical sciences, docent, associate professor at the sub-department of electrotechnical complexes and systems, Kazan state power engineering university,

Russia, Republic of Tatarstan, Kazan

Aleksandr Jamshhikov

master student ,

Russia, Republic of Tatarstan, Kazan

Aleksej Bagaev

master student Kazan state power engineering university ,

Russia, Republic of Tatarstan, Kazan

АННОТАЦИЯ

В практике эксплуатации технических систем в большинстве случаев приходится иметь дело с вероятностными (случайными) процессами, когда функция отражает аргумент с некоторой вероятностью. В условиях неопределенности информации о законе распределения времени наступления отказов вследствие малых объемов статистических данных, что как правило бывает на начальных этапах разработки техники, исследователю приходится принимать решение о выборе априорной модели надежности, исходя из опыта предыдущей эксплуатации прототипов или аналогов. Систематизация информации о практическом использовании основных распределений при прогнозировании и оценке надежности различных технических систем является актуальной научной задачей.

В основе изложенного материала лежит систематизация информации опубликованной литературе, и представляющая анализ результатов модельных и экспериментальных исследований надежности техники, а также статистические данные полученные в ходе эксплуатации.

Представленная теоретическая информация о применении гамма-распределения в теории надежности может быть использована в качестве первого приближения, и подлежит обязательному уточнению, с использованием различных критериев проверки гипотез, по мере увеличения объема статистических данных в ходе последующих испытаний.

Надо иметь достаточно оснований для применения экспоненциального закона распределения, как и любого другого. Поэтому статья может быть полезна исследователям на ранних этапах разработки или модернизации технической системы, в качестве априорной информации для построения моделей и критериев, используемых для обеспечения и контроля надежности.

ABSTRACT

In practice, operation of technical systems in most cases have to deal with stochastic (random) processes, when the function reflects the argument with a certain probability. In the face of uncertainty about the law of distribution of time of occurrence of failures due to small amounts of statistical data, which usually happens in the initial stages of technology development, the researcher has to decide on the choice of prior model reliability based on previous operating experience of prototypes or analogues. Systematization of information on the practical use of basic distributions in forecasting and assessing the reliability of various technical systems is an important scientific task.

In the above material is the systematization of the information published in literature, and representing the analysis results of model and experimental studies of reliability of equipment, as well as statistical data obtained during operation.

Presents theoretical information on the use of gamma distribution in the theory of reliability can be used as a first approximation and is subject to obligatory specification, using different criteria of testing hypotheses, increasing the volume of statistical data in subsequent tests.

It is necessary to have sufficient grounds for application of exponential distribution law, like any other. Therefore, the article may be useful for researchers in the early stages of development or modernization of technical systems, as a priori information to build the models and criteria used to ensure and control the reliability.

Ключевые слова: надежность, распределение, наработка, вероятность, плотность, этап, математическое ожидание.

Keywords: reliability, distribution, operation time, probability, density of distribution, stage, expected value.

Для описания отказов системы могут быть предложены модели, предназначенные для решения различных задач надежности и по-разному учитывающие комплекс факторов, присущих характеру отказов.

Случайный характер возникновения отказов в процессе эксплуатации технических систем и их элементов позволяет применять в их описании вероятностно-статистические методы. Наиболее распространенными являются модели отказов, основанные на распределении соответствующих случайных величин – наработок до отказа невосстанавливаемых объектов и наработок между отказами восстанавливаемых объектов.

В качестве основных видов распределения наработок изделий до отказа следует выделить :

  • экспоненциальное;
  • Вейбулла-Гнеденко;
  • гамма;
  • логарифмически-нормальное;
  • нормальное.

В результате обзора литературы в области надежности технических систем дана оценка практического применения гамма-распределения при исследовании различных технических объектов. На основе проведенного анализа можно подобрать подходящее априорное распределение соответствующего критерия или показателя надежности.

Гамма-распределение имеет двухпараметрическую плотность с параметром формы и параметром масштаба :

.

Вероятность безотказной работы определяется по формуле:

,

где: – гамма-функция;

– неполная гамма-функция.

Математическое ожидание (среднее время безотказной работы) и среднее квадратическое отклонение для гамма-распределения равны:

.

Формула для интенсивности отказов следующая:

.

Гамма-распределение служит для описания износовых отказов; отказов вследствие накопления повреждений; описания наработки сложной технической системы с резервными элементами; распределения времени восстановления ; а также может быть использовано при рассмотрении долговечности (ресурса) некоторых технических объектов .

Гамма-распределение обладает рядом полезных свойств:

На основании вышесказанного можно сделать вывод, что гамма-распределение допустимо использовать на всех участках жизненного цикла: приработки (), нормальной эксплуатации () и старения () .

Исходя из , в задачах, которые решаются в терминах преобразования Лапласа, гамма-распределением удобно аппроксимировать реальные распределения.

В приводится следующее определение: гамма-распределение – характеристика времени возникновения отказов в сложных электромеханических системах в тех случаях, когда имеют место мгновенные отказы элементов на начальной стадии эксплуатации или в процессе отладки системы, то есть является удобной характеристикой времени возникновения отказов аппаратуры в процессе ее приработки.

Для сложных технических систем, состоящих из элементов, у которых вероятность безотказной работы имеет показательное распределение, вероятность безотказной работы системы в целом будет иметь гамма-распределение.

Распределение времени возникновения отказов сложной технической системы с резервом замещением (при условии, что потоки отказов основной системы и всех резервных простейшие) также может быть описано гамма-распределением . Аналогичным образом в случае ненагруженного или смешанного резервирования вероятность безотказной работы системы подчиняется обобщенному гамма-распределению.

В заключение необходимо отметить, что при решении отдельных задач также применяют специальные виды (их несколько десятков), а также дискретные распределения, которые в рамках данной статьи не рассматривались. При этом между распределениями существуют различные взаимные переходы и связи. Несмотря на существующие критерии согласия выбранного теоретического и эмпирического распределения, они все дают ответ на вопрос: есть или нет достаточно серьезных оснований отвергнуть гипотезу о выбранном распределении? Авторами замечено, что любые данные можно подогнать под многопараметрический закон, даже если он не будет соответствовать реальным физическим явлениям . Таким образом, при выборе вида распределения и его параметров необходимо прежде всего учитывать физическую сущность происходящих процессов и событий.

Список литературы:

  1. ГОСТ Р.27.001-2009. Надежность в технике. Модели отказов. – М.: Стандартинформ, 2010. – 16 с.
  2. Герцбах И.Б., Кордонский Х.Б. Модели отказов / под ред. Б.В. Гнеденко. – М.: Советское радио, 1966. – 166 с.
  3. Гнеденко Б.В. Вопросы математической теории надежности. – М.: Радио и связь,1983. – 376 с.
  4. Каштанов В.Н., Медведев А.И. Теория надежности сложных систем: уч.пособие – М.: ФИЗМАТЛИТ, 2010. – 609 с.
  5. Литвиненко Р.С. Имитационная модель процесса функционирования электротехнического комплекса с учетом надежности его элементов // Журнал «Надежность». – 2016. – № 1 (56) – С. 46–54.
  6. Литвиненко Р.С., Идиятуллин Р.Г., Киснеева Л.Н. Оценка надежности гибридного транспортного средства на этапе разработки // Журнал «Транспорт: наука, техника, управление». – 2016. – № 2 – С. 34–40.
  7. Машиностроение: энциклопедия в 40 т. Т. IV-3: Надежность машин / В.В. Клюев, В.В. Болотин, Ф.Р. Соснин и др.; под общ. ред. В.В. Клюева. – М.: Машиностроение, 2003. – 592 с.
  8. Труханов В.М. Надежность технических систем типа подвижных установок на этапе проектирования и испытания опытных образцов: научное издание – М.: Машиностроение, 2003. – 320 с.
  9. Хазов Б.Ф., Дидусев Б.А. Справочник по расчету надежности машин на стадии проектирования. – М.: Машиностроение, 1986. – 224 с.
  10. Черкесов Г.Н. Надежность аппаратно-программных комплексов: учеб. пособие. – СПб.: Питер, 2005. – 479 с.

Простейший вид гамма-распределения - это распределение с плотностью

где - параметр сдвига, - гамма-функция, т.е.

(2)

Каждое распределение можно "развернуть" в масштабно-сдвиговое семейство. Действительно, для случайной величины , имеющей функцию распределения, рассмотрим семейство случайных величин, где- параметр масштаба, а- параметр сдвига. Тогда функция распределенияесть.

Включая каждое распределение с плотностью вида (1) в масштабно-сдвиговое семейство, получаем принятую в параметризацию семейства гамма-распределений:

Здесь - параметр формы,- параметр масштаба,- параметр сдвига, гамма-функциязадается формулой (2).

В литературе имеются и иные параметризации. Так, вместо параметра часто используют параметр. Иногда рассматривают двухпараметрическое семейство, опуская параметр сдвига, но сохраняя параметр масштаба или его аналог - параметр. Для некоторых прикладных задач (например, при изучении надежности технических устройств) это оправдано, поскольку из содержательных соображений представляется естественным принять, что плотность распределения вероятностей положительна для положительных значений аргумента и только для них. С этим предположением связана многолетняя дискуссия в 80-х годах о "назначаемых показателях надежности", на которой не будем останавливаться.

Частные случаи гамма-распределения при определенных значениях параметров имеют специальные названия. При имеем экспоненциальное распределение. При натуральномигамма-распределение - это распределение Эрланга, используемое, в частности, в теории массового обслуживания. Если случайная величинаимеет гамма-распределение с параметром формытаким, что- целое число,и, тоимеет распределение хи-квадратсстепенями свободы.

Области применения гамма-распределения

Гамма-распределение имеет широкие приложения в различных областях технических наук (в частности, в надежности и теории испытаний), в метеорологии, медицине, экономике . В частности, гамма-распределению могут быть подчинены общий срок службы изделия, длина цепочки токопроводящих пылинок, время достижения изделием предельного состояния при коррозии, время наработки до k-го отказа и т.д. . Продолжительность жизни больных хроническими заболеваниями, время достижения определенного эффекта при лечении в ряде случаев имеют гамма-распределение. Это распределение оказалось наиболее адекватным для описания спроса в ряде экономико-математических моделей управления запасами .

Возможность применения гамма-распределения в ряде прикладных задач иногда может быть обоснована свойством вопроизводимости: сумма независимых экспоненциально распределенных случайных величин с одним и тем же параметромимеет гамма-распределение с параметрами формы, масштабаи сдвига. Поэтому гамма-распределение часто используют в тех прикладных областях, в которых применяют экспоненциальное распределение.

Различным вопросам статистической теории, связанным с гамма-распределением, посвящены сотни публикаций (см. сводки ). В данной статье, не претендующей на всеохватность, рассматриваются лишь некоторые математико-статистические задачи, связанные с разработкой государственного стандарта .

В этой статье описаны синтаксис формулы и использование функции ГАММА.РАСПП в Microsoft Excel.

Возвращает гамма-распределение. Эту функцию можно использовать для изучения переменных, которые имеют асимметричное распределение. Гамма-распределение широко используется при анализе систем массового обслуживания.

Синтаксис

ГАММА.РАСП(x;альфа;бета;интегральная)

Аргументы функции ГАММА.РАСП описаны ниже.

    x - обязательный аргумент. Значение, для которого требуется вычислить распределение.

    Альфа - обязательный аргумент. Параметр распределения.

    Бета - обязательный аргумент. Параметр распределения. Если аргумент "бета" = 1, функция ГАММА.РАСП возвращает стандартное гамма-распределение.

    Интегральная - обязательный аргумент. Логическое значение, определяющее форму функции. Если аргумент "интегральная" имеет значение ИСТИНА, функция ГАММА.РАСП возвращает интегральную функцию распределения; если этот аргумент имеет значение ЛОЖЬ, возвращается функция плотности распределения вероятности.

Замечания

Пример

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем - клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Данные

Описание

Значение, для которого требуется вычислить распределение

Параметр распределения альфа

Параметр распределения бета

Формула

Описание

Результат

ГАММА.РАСП(A2;A3;A4;ЛОЖЬ)

Плотность вероятности при использовании значений x, альфа и бета в ячейках A2, A3, A4 с интегральным аргументом ЛОЖЬ.

ГАММА.РАСП(A2;A3;A4;ИСТИНА)

Интегральное распределение при использовании значений x, альфа и бета в ячейках A2, A3, A4 с интегральным аргументом ИСТИНА.

Неотрицательная случайная величина имеет гамма-распределение , если ее плотность распределения выражается формулой

где и , – гамма-функция:

Таким образом, гамма-распределение является двухпараметрическим распределением, оно занимает важное место в математической статистике и теории надежности. Это распределение имеет ограничение с одной стороны .

Если параметр формы кривой распределения – целое число, то гамма-распределение описывает время, необходимое для появления событий (отказов), при условии, что они независимы и появляются с постоянной интенсивностью .

В большинстве случаев это распределение описывает наработку системы с резервированием отказов стареющих элементов, время восстановления системы с резервированием отказов стареющих элементов, время восстановления системы и т. д. При различных количественных значениях параметров гамма-распределение принимает самые разнообразные формы, что и объясняет его широкое применение.

Плотность вероятности гамма-распределения определяется равенством, если

Функция распределения . (9)

Заметим, что функция надежности выражается формулой:

Гамма-функция обладает свойствами: , , (11)

откуда следует, что если – целое неотрицательное число, то

Кроме того, нам в последующем потребуется еще одно свойство гамма-функции: ; . (13)

Пример. Восстановление радиоэлектронной аппаратуры подчиняется закону гамма-распределения с параметрами и . Определить вероятность восстановления аппаратуры за час.

Решение. Для определения вероятности восстановления воспользуемся формулой (9) .

Для целых положительных значений функции , а при .

Если перейти к новым переменным, значения которых будут выражены ; , то получим табличный интеграл:

В этом выражении решение интеграла в правой части можно определить по той же формуле:


а при будет

При и новые переменные будут равны и , а сам интеграл будет равен

Значение функции будет равно

Найдем числовые характеристики случайной величины , подчиненной гамма-распределению

В соответствии с равенством (13) получим . (14)

Второй начальный момент найдем по формуле

откуда . (15)

Заметим, что при интенсивность отказов монотонно убывает, что соответствует периоду приработки изделия. При интенсивность отказов возрастает, что характеризует период изнашивания и старения элементов.

При гамма-распределение совпадает с экспоненциальным распределением, при гамма-распределение приближается к нормальному закону. Если принимает значения произвольных целых положительных чисел, то такое гамма-распределение называют распределением Эрланга -го порядка :



Здесь достаточно лишь указать, что закону Эрланга -го порядка подчинена сумма независимых случайных величин , каждая из которых распределена по показательному закону с параметром . Закон Эрланга -го порядка тесно связан со стационарным пуассоновским (простейшим) потоком с интенсивностью .

Действительно, пусть имеется такой поток событий во времени (рис. 6).

Рис. 6. Графическое представление пуассоновского потока событий во времени

Рассмотрим интервал времени , состоящий из суммы интервалов между событиями в таком потоке. Можно доказать, что случайная величина будет подчинена закону Эрланга -го порядка.

Плотность распределения случайной величины , распределенной по закону Эрланга -го порядка, может быть выражена через табличную функцию распределения Пуассона:

Если значение кратно и , то гамма-распределение совпадает с распределением хи-квадрат .

Заметим, что функцию распределения случайной величины можно вычислить по следующей формуле:

где определяются выражениями (12) и (13).

Следовательно, имеют место равенства, которые нам в дальнейшем пригодятся:

Пример. Поток производимых на конвейере изделий является простейшим с параметром . Все производимые изделия контролируются, бракованные укладываются в специальный ящик, в котором помещается не более изделий, вероятность брака равна . Определить закон распределения времени заполнения ящика бракованными изделиями и величину , исходя из того, чтобы ящик с вероятностью не переполнялся в течение смены.

Решение. Интенсивность простейшего потока бракованных изделий будет . Очевидно, что время заполнения ящика бракованными изделиями распределено по закону Эрланга


с параметрами и :

следовательно (18) и (19): ; .

Число бракованных изделий за время будет распределено по закону Пуассона с параметром . Следовательно, искомое число нужно находить из условия . (20)

Например, при [изделие/ч]; ; [ч]

из уравнения при

Случайная величина, имеющая распределение Эрланга, обладает следующими числовыми характеристиками (табл. 6).

Таблица 6

Плотность вероятности , , где – параметр масштаба ; – параметр формы, порядок распределения , целое положительное число
Функция распределения
Характеристическая функция
Математическое ожидание
Мода
Дисперсия
Асимметрия
Эксцесс
Начальные моменты , , ,
Центральные моменты ,

Заметим, что случайная величина, имеющая нормированное распределение Эрланга -го порядка, обладает следующими числовыми характеристиками (табл. 7).

Таблица 7

Плотность вероятности , , где – параметр масштаба ; – параметр формы, порядок распределения , целое положительное число
Функция распределения
Характеристическая функция
Математическое ожидание
Мода
Дисперсия
Коэффициент вариации
Асимметрия
Эксцесс
Начальные моменты , , ,
Центральные моменты ,