Принципы построения систем единиц физических величин. Система единиц физических величин. Принципы построения. Основные понятия и определения допусков и посадок

Лекция 1

Вводное занятие. Предмет «метрология», задачи, принципы, объекты и средства метрологии, стандартизации и сертификации. Закон РФ «Об обеспечении единства измерений». Международные организации по метрологии .

Слово метрология образовано из двух греческих слов метрон (мера) и логос (учение, умение) и означает - учение о мерах. Метрология в современном понимании - наука об измерениях, методах и средст­вах обеспечения их единства и способах достижения требуемой точ­ности.

Единством измерений называется состояние измерений, при которых их результаты выражены в узаконенных единицах и по­грешности известны с заданной вероятностью.

Долгое время метрология была в основном описатель­ной наукой о различных мерах и соотношениях между ними. Но в процессе развития общества роль измере­ний возрастала, и с конца прошлого века благодаря прогрессу физики метрология поднялась на качественно новый уровень.

Сегодня метрология - это не только наука об измерени­ях, но и деятельность, предусматривающая изучение физи­ческих величин, их воспроизведение и передачу, примене­ние эталонов, основных принципов и методов создания средств измерений, оценку их погрешности, а также метро­логический контроль и надзор.

Цель метрологии заключается в обеспечении единства измерений, т.е. сопоставимости и согласуемости их резуль­татов, причем независимо от того, где, когда и кем были эти результаты получены.

Поскольку по результатам измерений принимаются ответ­ственные решения, то должна быть обеспечена соответству­ющая точность, достоверность и своевременность измерений.

Можно выделить три главные функции измерений в на­родном хозяйстве:

1) учет продукции народного хозяйства, исчисляющейся по массе, длине, объему, расходу, мощности, энергии;

2) измерения, проводимые для контроля и регулирования технологических процессов и для обеспечения нормального функционирования транспорта и связи;

3) измерения физических величин, технических парамет­ров, состава и свойств веществ, проводимые при научных исследованиях, испытаниях и контроле продукции в различ­ных отраслях народного хозяйства.



Значимость измерений особенно важна при переходе к рыночным отношениям, связанным с конкуренцией произво­дителей и соответственно с повышенными требованиями к качеству и техническим параметрам продукции. Повышение качества измерений и внедрение новых методов измерений зависят от уровня развития метрологии.

Основными задачами метрологии являются;

· обеспечение исследований, производства и экс­плуатации технических устройств;

· контроль за состоянием окружающей среды;

· обеспечение учреждений организаций соответствующими средствами измерений.

Метрологию подразделяют на

· общую - теоретическую и экспериментальную;

· прикладную (практическую);

· законодательную.

Теоретическая метрология занимается вопросами фун­даментальных исследований, созданием системы единиц из­мерений, физических постоянных, разработкой новых мето­дов измерений.

Экспериментальная метрология - вопросами созда­ния эталонов, образцов мер, разработкой новых измеритель­ных приборов, устройств и информационных систем.

Прикладная (практическая) метрология занимается вопросами практического применения в различных сферах деятельности результатов теоретических исследований в рамках метрологии.

Законодательная метрология включает комплекс взаи­мосвязанных и взаимообусловленных общих правил, а также другие вопросы, регламентация и контроль которых необхо­димы со стороны государства и для обеспечения единства из­мерений и единообразия системы измерений.

Метрологическая служба - совокупность субъектов деятельности и видов работ, направленных на обеспечение единства измерений.

Закон определяет, что Государственная метрологическая служба находится в ведении Госстандарта России и включает: государствен­ные научные метрологические центры; органы Государственной мет­рологической службы на территории республик в составе Россий­ской Федерации, автономной области, автономных округов, краев, областей, городов Москвы и Санкт-Петербурга.

Госстандарт России осуществляет руководство Государственной службой времени и частоты и определения параметров вращения Зем­ли (ГСВЧ), Государственной службой стандартных образцов состава и свойств веществ и материалов (ГССО) и Государственной службой стандартных справочных данных о физических константах и свойствах веществ и материалов (ГСССД) и координацию их деятельности.

Объектами государственного надзора являются:

1. нормативные документы по стандартизации и техническая документация;

2. продук­ция, процессы и услуги;

3. иные объекты в соответствии с действую­щим законодательством о государственном надзоре.

В 1993 г. был принят «Закон Российской Федерации об обеспе­чении единства измерений», который устанавливает правовые ос­новы обеспечения единства измерений в Российской Федерации. Закон регулирует отношения государственных органов управления Российской Федерации с юридическими и физическими лицами по вопросам изготовления, выпуска, эксплуатации, ремонта, про­дажи и импорта средств измерений и направлен на защиту прав и законных интересов граждан, установленного правопорядка и экономики Российской Федерации от отрицательных послед­ствий недостоверных результатов измерений.

Закон «Об обеспечении единства измерений» состоит из семи разделов: общие положения; единицы величин, средства и методи­ки выполнения измерений; метрологические службы; государствен­ный метрологический контроль и надзор; калибровка и сертификация средств измерений; ответственность за нарушение закона и финансирование работ по обеспечению единства измерений.

В первом разделе Закон «Об обеспечении единства измерений» устанавливает и законодательно закрепляет основные понятия, при­нимаемые для целей Закона: единство измерений, средство измере­ний, государственный эталон единицы величины, нормативные до­кументы по обеспечению единства измерений, метрологическая служ­ба, метрологический контроль и надзор, поверка и калибровка средств измерений, сертификат об утверждении типа средств измерений, аккредитация на право поверки средств измерений и сертификат о калибровке. В первой статье закона дается следующее определение понятия «единство измерений».

единство измерений - состояние измерений, при котором их резуль­таты выражены в узаконенных единицах величин и погрешности измере­ний не выходят за установленные границы с заданной вероятностью.

Понятие «единство измерений» охватывает важнейшие задачи метрологии: унификацию единиц, разработку систем воспроизведе­ния единиц и передачи их размеров рабочим средствам измерений с установленной точностью, проведение измерений с погрешнос­тью, не превышающей установленные пределы, и др. Единство из­мерений должно выдерживаться при любой точности измерений, необходимой отрасли экономики.

Обеспечение единства измерений является задачей метрологических служб.

Комплекс нормативных, нормативно-технических и методических документов межотраслевого уровня, ус­танавливающих правила, нормы, требования, направ­ленные на достижение и поддержание единства измерений в стране при требуемой точности, составляет государствен­ную систему обеспечения единства измерений (ГСИ).

В ГСИ выделяются базовые стандарты, устанавливающие общие требования, правила и нормы, а также стандарты, ох­ватывающие конкретную область или вид измерений.

К основополагающим базовым стандартам относятся, например, ГОСТ 8.417 «ГСИ. Единицы физических ве­личин», ГОСТ 16363 «Метрология. Термины и опреде­ления». Базовые стандарты можно подразделить на группы в зависимости от объекта стандартизации:

· эталоны единиц физических величин;

· передача информации о размере единицы от этало­нов к средствам измерений;

· порядок нормирования метрологических характери­стик средств измерений;

· правила выполнения и оформления результатов изме­рений;

· единообразие средств измерений;

· метрологический надзор за разработкой, состоянием и применением средств измерений;

· государственная служба стандартных справочных данных.

В настоящее время нормативная база ГС И насчиты­вает более 2600 документов, в том числе 388 ГОСТов, около 2000 методических указаний метрологических институтов, 77 руководящих документов и 87 инструкций.

Сеть организаций, на которые возложена ответственность за метрологическое обеспечение измерений, составляет мет­рологическую службу. Различают два уровня метрологиче­ской службы - государственную метрологическую службу и метрологические службы юридических лиц (предприятий и объединений).

В состав государственной службы входят территориаль­ные органы и государственные научные метрологические центры (НИИ Госстандарта России). В структуру государ­ственной метрологической службы включены также специа­лизированные службы: государственная служба времени и частоты - ГСВЧ, государственная служба стандартных об­разцов - ГССО, государственная служба стандартных спра­вочных данных - ГСССД.

К основным видам метрологической деятельности от­носятся метрологическое обеспечение подготовки производства, государственные испытания средств измерений, поверка средств измерений.

Метрологическое обеспечение подготовки производ­ства - это комплекс организационно-технических меро­приятий, направленных на определение с требуемой точно­стью параметров продукции (изделий, узлов, материалов) и сырья, технологических процессов и оборудования и позволяющих добиться высокого качества выпускаемой продукции, а также снижения непроизводительных затрат на ее выпуск.

Работы по метрологическому обеспечению подготовки производства выполняют метрологические, конструкторские, технологические службы предприятий с момента получения исходных документов на осваиваемое изделие.

Испытания средств измерений проводятся государствен­ными научными центрами Госстандарта России.

В состав комиссии входят представители:

· государственного центра испытаний средств изме­рений;

· заказчика средств измерений;

· ведомственной метрологической службы;

· организации-разработчика;

· производителя средств измерений.

В случае успешного испытания средства измерений, в ре­зультате которого подтверждены все параметры и характери­стики средств измерений, документация предоставляется в Госстандарт России и принимается решение об утверждении типа средства измерений. Это решение удостоверяется сер­тификатом об утверждении типа средств измерений. Утвер­жденный тип заносится в государственный реестр средств измерений.

Государственный метрологический контроль и надзор является технической и правовой деятельностью, осуществ­ляемой органами государственной метрологической службы в целях проверки соблюдения правил законодательной мет­рологии - Закона РФ «Об обеспечении единства измерений», нормативных актов по вопросам метрологии.

К объектам государственного метрологического контро­ля и надзора относятся :

· средства измерений;

· эталоны, применяемые для поверки средств измерений;

· методики выполнения измерений;

· количество фасованных товаров в упаковках любого вида при их продаже и расфасовке.

Государственный метрологический контроль (ГМК) рас­пространяется:

1. на здравоохранение, ветеринарию, охрану окружа­ющей среды, обеспечение безопасности;

2. торговые операции и взаимные расчеты между поку­пателем и продавцом;

3. государственные учетные операции;

4. обеспечение обороны;

5. геодезические и гидрометеорологические работы;

6. банковские, налоговые, таможенные и почтовые опе­рации;

7. продукцию, поставляемую по государственным кон­трактам;

8. испытания и контроль качества продукции на соот­ветствие обязательным требованиям стандартов и при обязательной сертификации продукции;

9. измерения, проводимые по поручению органов суда, прокуратуры, арбитража, других органов государ­ственного управления;

10. регистрацию национальных и международных спор­тивных рекордов.

Характеристика видов государственного метро­логического контроля и надзора. Государственный метрологический контроль и надзор включает:

1. государственный метрологический надзор за коли­чеством товаров, отчуждаемых при совершении тор­говых операций; за количеством фасованных то­варов в упаковках любого вида при их расфасовке и продаже;

2. поверку средств измерений, в том числе эталонов;

3. утверждение типа средств измерений;

лицензирование деятельности юридических и физи­ческих лиц по изготовлению, ремонту, продаже, про­кату средств измерений. Государственному метрологическому контролю подлежат торговые операции, при совершении которых определяется масса, объем, расход и другие величины, характеризующие количество отчуждаемых товаров.

Государственному метрологическому надзору в сфере банковских операций подлежат средства измерения для иден­тификации ценных бумаг и валют (например, детекторы ва­лют, счетчики банкнот), электронных подписей, залоговых ценностей. Принимая на депозитное хранение такие ценно­сти, как, например, благородные металлы, драгоценные кам­ни, банки должны обеспечить измерение их количества и состава с требуемой точностью.

Государственному метрологическому надзору подлежат фасованные товары в упаковках любого вида при их прода­же или расфасовке, в случаях, когда содержимое упаковки не может быть изменено без ее вскрытия или деформации, а количество содержимого указано нанесенным на упаковку значением массы. При проведении надзора проверяют соот­ветствие действительного значения массы, объема и других величин количеству фактически содержащегося в упаковке товара и нанесенному на упаковку значению.

Средства измерений, используемые в указанных сферах государственного метрологического контроля и надзора, под­лежат поверке органами государственной метрологической службы при выпуске и после ремонта, при эксплуатации и продаже, ввозе по импорту. Поверку средств измерений осу­ществляют лица, аттестованные в качестве поверителей в органах государственной метрологической службы. Положи­тельные результаты поверки средств измерений удостоверя­ют знаком поверительного клейма или сертификатом о по­верке. Знак поверительного клейма наносят на средства измерений и в эксплуатационную документацию, а в случае выдачи сертификата о поверке - на сертификат. Если знак поверительного клейма поврежден, а также если сертифи­кат утрачен, средство измерений признается непригодным к применению.

Средства измерений, предназначенные для выпуска или ввоза по импорту, подвергаются обязательным испытаниям с последующим утверждением типа. Решение об утвержде­нии типа средства измерений принимается Госстандартом России и удостоверяется сертификатом. Утвержденный тип вносится в Государственный реестр средств измерений. В необходимых случаях тип средства измерений подверга­ется также обязательной сертификации на безопасность применения в соответствии с законодательством о защите здоровья, жизни и имущества граждан, охране труда и ок­ружающей среды.

Организация государственного метрологическо­го контроля и надзора. Контроль и надзор осущест­вляются государственными инспекторами органов го­сударственной метрологической службы. Госинспекторы беспрепятственно посещают объекты, где эксплуатируются средства измерений, с целью их поверки, отбора образцов товара для осуществления контроля при их продаже и рас­фасовке и других видов контроля. При выявлении наруше­ния госинспектор имеет право запрещать применение средств измерения неутвержденных, а также неповеренных типов; гасить клейма или аннулировать сертификат о поверке, в слу­чаях когда средство измерений дает неправильные показа­ния или просрочен межповерочный интервал; давать обя­зательные предписания и устанавливать сроки устранения нарушения метрологических правил; составлять протоколы об административной ответственности нарушителей метро­логических правил для принятия решений о применении сан­кций.

Юридические и физические лица обязаны оказывать со­действие инспектору в выполнении возложенных на него обязанностей. Лица, препятствующие осуществлению госу­дарственного метрологического контроля и надзора, несут ответственность в соответствии с действующим законода­тельством.

В соответствии с действующим законодательством за нарушение правил законодательной метрологии предусмотре­ны административная и уголовная ответственность, эконо­мические санкции.

Административную ответственность за нарушение правил несут руководители и должностные лица юри­дических лиц, а также физические лица, по вине кото­рых были допущены нарушения. Административные взыска­ния налагаются в виде штрафа. Основанием для взыскания служат несоблюдение правил метрологии при продаже и рас­фасовке товаров в упаковки, несоблюдение правил поверки средств измерений, воспрепятствование осуществлению мет­рологического контроля и надзора уполномоченными на то органами.

Уголовная ответственность наступает в случае приме­нения неповеренных или иных непригодных средств измерений в розничной торговой сети или сфере об­щественного питания, здравоохранения, охраны окружа­ющей среды, обеспечения безопасности. В зависимости от степени нарушения метрологических правил предусматри­ваются крупный штраф, исправительные работы, лишение права занимать должности, связанные с измерением, лише­ние свободы. Экономические санкции применяются, как пра­вило, к юридическим лицам. Размер санкций определяется действующим законодательством.

Состав Государственной метрологической службы РФ (ГМС).
Наименование учреждения Функции учреждения
Федеральное агентство по техническому регулированию и метрологии - возглавляет ГМС Разработка, обсуждение, утверждение и учет технических регламентов, национальных стандартов, общероссийских классификаторов, систем каталогизации и т.д. Руководствод_координация деятельностлГМС. Проведение конкурсов на соискание премий Правительства РФ.
Государственные научные метрологические центры (ГНМЦ) -7ВНИИ Хранение государственных эталонов, проведение исследования; разработка методов высокоточных измерении и нормативных документов
Региональные центры стандартизации, метрологии и сертификации (ЦСМ и С) - более Госконтроль и надзор за обеспечением единства измерений в регионе, метрологическое обеспечение предприятий, поверка и калибровка средст измерений, аккредитация измерительных лабораторий, обучение и аттестация поверителей, разработка новых средств измерений, техобслуживание и ремонхср^Д£гв^13з1ер^ний.
Государственная служба времени, частоты и определения параметров вращения земли (ГСВЧ) Межрегиональная и межотраслевая координация работ в данной области, хранение и передача размеров единицы времени и частоты, координат полюсов земли. Измерительную информацию используют службы навигации и управления судами, самолетами и спутниками и р.
Государственная служба стандартных образцов состава и свойств материалов (ГССО) Обеспечивают разработку средств сопоставления стандартных образцов с характеристиками веществ и материалов, которые производятся промышленными и сельскохозяйственными предприятиями, для их идентификации и контроля.
Государственная служба стандартных справочных данных о физических константах и свойствах веществ и материалов (ГСССД) Обеспечивают разработку достоверных данных о физических константах, свойствах веществ, нефти, газа и др. Информацию используют организации, создающие новую технику.
Международные организации по метрологии
Наименование организации Цели, задачи и деятельность организации
1. Международная организация законодательной метрологии (МОЗМ) Создана в 1955 г. Объединяет более 80 государств. Цели: разработка общих вопросов законодательной метрологии, в т.ч. установление классов точности СИ, обеспечение единообразия определения типов и образцов систем СИ, рекомендаций по испытаниям и подготовке кадров. Высший орган Международная конференция законодательной метрологии. Созывается 1 раз в 4 года. Решения носят рекомендательный характер. Россию в МОЗМ представляет Федеральное агентство по техническому регулированию и метрологии, а также 12 министерств и ведомств. Участие России позволяет влиять на содержание принимаемых рекомендаций, добиваясь их соответствия российским стандартам, позволяет совершенствовать метрологическую работу.
2. Международная организация мер и весов (МОМБ) Создана в 1875 г. - подписана Метрологическая конвенция. Цели: унификация национальных единиц измерений и установление единых фактических эталонов длины и массы. МБМВ - научно-исследовательская лаборатория, которая хранит и поддерживает международные эталоны. ЕЕ главная задача - сличение национальных эталонов с международными, совершенствование систем измерений. Высший орган МОМБ - Генеральная конференция мер и весов. (1 раз в 4 года). Работой МОБВ между конференциями руководит Международный комитет мер и весов, в который входят крупнейшие физики и метрологи мира, в т.ч. представители России. Всего 18 членов. Важнейший результат деятельности - переход стран на единые единицы и эталоны.
3. Международная организация по стандартизации (ИСО) Создана в 1946 г. Члены ИСО - национальные организации по стандартизации стран мира. 135 стран представлены. Сфера деятельности ИСО распространяется на все области, кроме электротехники и электроники. Главные задачи: развитие стандартизации, метрологии и сертификации с целью обеспечения обмена товарами и услугами, развитие сотрудничества в научно-технической и экономической областях. Стандарты ИСО - наиболее широко используются в мире, их общее число превышает 12000. Ежегодно принимается и пересматривается около 1000 стандартов. Они не являются обязательными для применения странами - членами ИСО. Все зависит от степени участия страны в международном разделении труда и состояния ее внешней торговли. В России идет активный процесс внедрения стандартов ИСО а национальную систему стандартизации.
4. Международная электротехническая комиссия (МЭК) Создана в 1906 г. Автономная организация в составе ИСО. Основная цель определена Уставом - содействие международному сотрудничеству по стандартизации в области электротехники и радиотехники путем разработки стандартов. Страны представлены в МЭК своими национальными органами по
стандартизации (РФ - Федеральное агентство по техническому регулированию и метрологии).Высший руководящий орган МЭК - Совет национальных комитетов всех стран. МЭК принято более 2000 стандартов. Они более конкретны, чем стандарты ИСО и поэтому более пригодны для применения в странах - членах МЭК. В России внедрено более половины принятых МЭК стандартов.
Европейская организация по метрологии (ЕВРОМЕТ) Региональная международная организация. Работает в области исследования и разработки национальных эталонов, содействует развитию поверочных служб, разрабатывает методы наивысшей точности.

Международная организация мер и весов (МОМВ) обеспечи­вает хранение и поддержание международных эталонов различных единиц и сличение с ними государственных эталонов и состоит из Генеральной конференции мер и весов, Международного комитета по мерам и весам, Международного бюро мер и весов (МБМВ).

В большинстве стран мира мероприятия по обеспечению единства измерений установлены законодательно. Поэтому один из разделов метрологии называется законодательной метрологией и включает комплекс общих правил, требований и норм, направлен­ных на обеспечение единства измерений и единообразия средств измерений. Для единообразия в единицах измерений в 1978 г. был утвержден Международный стандарт «Единицы физических вели­чин» (СИ), который введен с 1 января 1979 г. как обязательный во всех областях народного хозяйства, науки, техники и при препо­давании.

Основные понятия и определения принятые в метрологии. Физические величины. Типы шкал. Понятия о системе физических величин.

Основные термины и определения сформулированы в ряде нормативно-технических документов.

Физическая величина - свойство физического объекта, явления или процесса, общее в качественном отношении для многих физических объектов, но в ко­личественном выражении индивидуальное для каждого из них, например длина, масса, электрическое сопротивление.

Измерение - совокупность операций по применению технического средства, хранящего единицу физической величины, заключающихся в сравнении измеряемой ве­личины с единицей.

Диапазон измерений - область значений величин, в пределах которых нормированы допускаемые пре­делы погрешности. Значения величины, ограничива­ющие диапазон измерений снизу или сверху (слева или спра­ва), называют нижним пределом или верхним пределом измерений.

Порог чувствительности - наименьшее значение измеряемой величины, которое вызывает заметное из­менение выходного сигнала. Например, если порог чувствительности весов равен $Q mi» to это означает, что за­метное перемещение стрелки весов достигается при таком малом изменении массы, как 10 мг.

ШКАЛЫ ИЗМЕРЕНИЙ

Шкала измерений - это упорядоченная совокупность зна­чений физической величины, служащих основой для изме­рения данной величины. Упорядочение значений физиче­ской величины может быть достигнуто разными способами.

Шкала наименований характеризуется только отно­шением эквивалентности различных качественных проявлений свойства. Эти шкалы не имеют нулевой от­метки, единиц измерения, в них нет отношений сопоставле­ния типа больше, меньше, лучше, хуже и т.д. Например, в шкале цветов процесс измерений достигается определением эквивалентности при визуальном наблюдении испытуемого образца с одним из эталонов, входящих в атлас цветов.

Простейший способ получения информации, позволя­ющий составить некоторое представление о размере изме­ряемой величины, заключается в сравнении его с другим по принципу «что больше (меньше)?», или «что лучше (хуже)?».

При этом число сравниваемых между собой размеров может быть достаточно большим. Расположенные в порядке возра­стания или убывания размеры измеряемых величин образу­ют шкалы порядка.

Операция расстановки размеров по их возрастанию или убыванию с целью получения измерительной информации по шкале порядка называется ранжированием . Для облегчения измерений по шкале порядка некоторые точки на ней можно зафиксировать в качестве опорных (реперных). Точкам шка­лы могут быть присвоены цифры, часто называемые балла­ми. Например, знания оценивают по четырехбалльной реперной шкале, имеющей следующий вид: неудовлетворительно, удовлетворительно, хорошо, отлично. По реперным шкалам измеряется твердость минералов, чувствительность пленок и другие величины (интенсивность землетрясений измеряется по 12-балльной шкале, называемой международной сейсми­ческой шкалой).

Шкала интервалов (разности) описывает свойства величины не только с помощью отношений эквивален­тности, но также с помощью суммирования и пропор­циональности интервалов между количественными проявле­ниями свойства. Примером может служить шкала измерения времени, которая разбита на крупные интервалы - года, на более мелкие - сутки и т.д.

По шкале интервалов можно судить не только о том, что один размер больше другого, но и о том, насколько больше. Однако по шкале интервалов нельзя оценить, во сколько раз один размер больше другого. Это обусловлено тем, что на шкале интервалов известен только масштаб, а начало отсче­та может быть выбрано произвольно.

Наиболее совершенной является шкала отношений. Примером ее может служить температурная шкала Кельви­на, шкала Цельсия, шкалы массы и т.д.

По шкале отношений можно определить не только, на сколько один размер больше другого, но и во сколько раз больше или меньше.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

Основным объектом измерения в метрологии явля­ются физические величины. Физическая величина применяется для описания материальных систем, объектов, явлений, процессов, изучаемых в любых науках. Существуют основные и производные величины. В качестве основных выбирают величины, которые характеризуют фун­даментальные свойства материального мира. ГОСТ 8. 417 устанавливает семь основных физических величин: длину, массу, время, термодинамическую температуру, количество вещества, силу света, силу тока. Измеряемые величины име­ют количественную и качественную характеристики.

Формализованным отражением качественного разли­чия измеряемых величин служит их размерность. В соответствии с документами ИСО размерность обо­значается символом dim (от лат. dimension - измерение).

Размерность основных физических величин - длины, массы, времени - обозначается соответствующими заглав­ными буквами:

dim t = Т.

Размерность физической величины записывается в виде произведения символов соответствующих основных физи­ческих величин, возведенных в определенную степень - показатель размерности:

где L, М, Т - размерности основных физических величин;

Показатели размерности (показатели степени, в кото­рую возведены размерности основных физических ве­личин).

Например: размерность ускорения - м/с 2

Каждый показатель размерности может быть положи­тельным или отрицательным, целым или дробным, нулем. Если все показатели размерности равны нулю, то величина назы­вается безразмерной.

Количественной характеристикой измеряемой величины служит ее размер. Получение информации о размере физи­ческой величины является содержанием любого измерения.

Значение измеряемой величины - оценка размера фи­зической величины в виде некоторого числа принятых для нее единиц.

Например: L = 1 м = 100 см = 1000 мм.

Входящее в него отвлеченное число называется числовым значением. В приведенном примере это 1, 100, 1000.

Значение физической величины получают в результате ее измерения или вычисления в соответствии с основным уравнением измерения:

где Q - значение физической величины;

X - числовое значение измеряемой величины в принятой еди­нице; [Q] - выбранная для измерения единица.

Допустим, измеряется длина отрезка прямой в 10 см с помощью линейки, имеющей деления в сантиметрах и милли­метрах. Для данного случая:

В то же время применение различных единиц (1 см и 1 мм) привело к изменению числового значения результата изме­рений.

Принципы построения Международной системы единиц. Преимущества СИ .

Единица физической величины - это физическая вели­чина, которой по определению присвоено числовое зна­чение, равное единице (1 м, 1 фунт, 1 см). Система единиц физических величин - совокупность основных и производных единиц, относящихся к некоторой системе величин и образованная в соответствии с приняты­ми принципами.

В России, как практически во всех странах мира, действу­ет Международная система единиц, основными физически­ми величинами которой являются метр, килограмм, секунда, ампер, кандела, кельвин, моль. Международная система была утверждена в 1960 г. на XI конференции мер и весов.

Единицы физических величин международной системы физических величин образуются на основе законов, устанав­ливающих связь между физическими величинами, или на ос­новании принятых в определенных НИИ физических величин.

Для единообразия в единицах измерений в 1978 г. был утвержден Международный стандарт «Единицы физических вели­чин» (СИ), который введен с 1 января 1979 г. как обязательный во всех областях народного хозяйства, науки, техники и при препо­давании.

СИ содержит семь основных единиц, которые затрагивают из­мерения всевозможных параметров: механических, тепловых, элек­трических, магнитных, световых, акустических и ионизирующих излучений и в области химии. Основными единицами установлены: метр (м) - для измерения длины; килограмм (кг) - для измерения массы; секунда (с) - для измерения времени; ампер (А) - для изме­рения силы электрического тока; Кельвин (К) - для измерения тем­пературы; кандела (свеча) кд - для измерения силы света, моль - для измерения количества вещества.

До 1960 г. за международный эталон и национальный эталон длины 1 м принималось расстояние между серединами двух штри­хов на бруске Х-образного сечения, сделанном из сплава платины с иридием. У этого эталона расстояние между серединами штрихов было невозможно измерить точнее ±0,1 мкм, что не отвечало требо­ваниям современного состояния науки и техники. Недостатком эта­лона являлось и то, что он представлял собой металлический брусок, который при стихийном бедствии (например, землетрясении или наводнении) мог пропасть или потерять со временем точное значе­ние метра.

Принципы построения Международной системы единиц

Первая система единиц физических величин, хотя она и не яв­лялась еще системой единиц в современном понимании, была при­нята Национальным собранием Франции в 1791 г. Она включала в себя единицы длины, площади, объема, вместимости и массы, ос­новными из которых были две единицы: метр и килограмм.

Систему единиц как совокупности основных и производных единиц впервые в 1832 г. предложил немецкий ученый К. Гаусс. Он построил систему единиц, где за основу принял единицы длины (миллиметр), массы (миллиграмм) и времени (секунда), и назвал ее абсолютной систем

Единица длины (метр) - длина пути, проходимого светом в ваку­уме за 1/299 792 458 долю секунды.

Единица массы (килограмм) - масса, равная массе международ­ного прототипа килограмма.

Принципы построения системы единиц величин ØСистема физических величин – Совокупность физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимают за независимые (основные величины), а другие (производные величины) определяют как функции независимых величин. ØСистемы физических величин, существовавшие в разные времена и в разных государствах, имели много отличий: Ø они использовали разные меры, Ø они имели разные кратности используемых единиц, Ø они имели разное количество основных и производных единиц. 2

Системы единиц, которые применялись до введения международной системы Система Гаусса (LMT – миллиметр, миллиграмм, секунда); 2. Система СГС (LMT+QJ – сантиметр, грамм, секунда + кельвин, кандела) распространяется на область тепловых и оптических величин; 3. Система МКС (LMT+QJ – метр, килограмм, секунда + кельвин, кандела) распространяется на область тепловых и световых величин; 4. Система МТС (LMT – метр, тонна, секунда); 5. Система МКГСС (LFT – метр, килограмм-сила, секунда). Область распространения – механика, теплотехника. Килограмм-сила– сила, равная весу тела массой 1 кг при нормальном ускорении свободного падения g 0 = 9, 80665 м/с2 1 кгс = 9, 80655 Н 1. 3

Системы единиц электромагнитных величин Электростатическая система единиц (система СГСЭ) При построении этой системы первой производной электрической единицей вводится единица электрического заряда с использованием закона Кулона в качестве определяющего уравнения. При этом абсолютная диэлектрическая проницаемость рассматривается безразмерной электрической величиной. Как следствие этого, в некоторых уравнениях, связывающих электромагнитные величины, появляется в явном виде корень квадратный из скорости света в вакууме. n Электромагнитная система единиц (система СГСМ). При построении этой системы первой производной электрической единицей вводится единица силы тока с использованием закона Ампера в качестве определяющего уравнения. При этом абсолютная магнитная проницаемость рассматривается безразмерной электрической величиной. В связи с этим, в некоторых уравнениях, связывающих электромагнитные величины, появляется в явном виде корень квадратный из скорости света в вакууме. n 4

Симметричная система единиц (система СГС). Эта система является совокупностью систем СГСЭ и СГСМ. В системе СГС в качестве единиц электрических величин используются единицы системы СГСЭ, а в качестве единиц магнитных величин– единицы системы СГСМ. В результате комбинации двух систем в некоторых уравнениях, связывающих электрические и магнитные величины, появляется в явном виде корень квадратный из скорости света в вакууме. n 5

Принципы построения системы единиц величин ØПри всех этих различиях, существовавшие системы физических величин имели общие черты: Ø наличие общепризнанных (узаконенных для данного государства) мер для воспроизведения единиц физических величин, Ø наличие связей между отдельными мерами для образования производных единиц, Ø наличие системы передачи размеров единиц физических величин. ØПередача размера единицы – приведение размера единицы физической величины, хранимой средством измерений, к размеру единицы, воспроизводимой или хранимой эталоном 6

Принципы построения системы единиц величин Взаимосвязи физических величин в системе отражаются с помощью такого важного понятия как размерность – (от dimension). Размерность величины представляет собой выражение в форме степенного многочлена, раскрывающее связь физической величины Q с основными физическими величинами. Например, в системе LMT, принятой в механике, в которой в качестве основных единиц используются длина L, масса M, время T, размерность имеет вид: Показатели a, b, g называются показателями размерности. В частности, размерность скорости а размерность силы, 7

Принципы построения системы единиц величин Над размерностями можно производить действия: умножения, деления, возведения в степень и извлечение корня. Понятие размерности широко используется: Ø для перевода единиц из одной системы в другую; Ø для проверки правильности расчётных формул, полученных в результате теоретического вывода; Ø при выяснении зависимости между ними; Ø в теории физического подобия. 8

Принципы построения системы единиц величин Размерность производной величины – простейшее уравнение связи, определяющее величину, с коэффициентом пропорциональности равным единице. Однако при этом размерность не отражает физическую природу величины. В частности, у ряда различных по природе величин размерности оказываются одинаковыми. Например, работа и момент силы имеют одну и ту же размерность: Кроме того, размерность не раскрывает способ измерения величины, за исключением простейших случаев, когда уравнение связи совпадает с выражением размерности, что к примеру характерно для площади квадрата. 9

Принципы построения системы единиц величин 1. Уравнения связи между величинами, в которых под буквенными символами понимаются физические величины: X=f (X 1, X 2, …Xm) (1) X 1, X 2, …Xm – величины, связанные с измеряемой величиной Х некоторым уравнением связи. 2. Уравнения связи между числовыми значениями величин, в которых под буквенными символами понимаются числовые значения физических величин: n X = q [X]; X 1 = q 1 ; X 2 = q 2 ; X m = q m [ X m] Где q, q 1, …qm – числовые значения; [X], , …, – единицы величин Уравнение связи между числовыми значениями можно привести к уравнению размерности. 10

Принципы построения системы единиц величин Зависимости между единицами измерений, проявляющиеся в физических законах, позволяют получать производные единицы системы, понятие которых впервые было введено К. Гауссом. Наименования и обозначения производных величин могут быть получены: Ø из наименований и обозначений основных единиц; Ø с использованием специальных наименований и обозначений; Ø из наименований и обозначений основных и специальных наименований и обозначений производных единиц; Ø с использованием кратных и дольных приставок и множителей. 11

Принципы построения системы единиц величин Производные единицы бывают: когерентными и некогерентными. Когерентной называется производная единица, связанная с другими единицами системы уравнением, в котором числовой множитель принят равным единице. Например, единицу скорости образуют с помощью уравнения, определяющего скорость прямолинейного равномерного движения точки: v = L/ t , где L – длина пройденного пути; t – время движения. Подстановка вместо L и t их единиц дает v = 1 м/с. Следовательно, единица скорости является когерентной. 12

Принципы построения системы единиц величин n n n n При построении системы физических величин подбирается такая последовательность определяющих уравнений, в которой каждое последующее уравнение содержит только одну новую производную величину, что позволяет выразить эту величину через совокупность ранее определенных величин, а, в конечном счете, через основные величины системы величин. Чтобы найти размерность производной физической величины в некоторой системе величин, надо в правую часть определяющего уравнения этой величины вместо обозначений величин подставить их размерности. Так, например, поставив в определяющее уравнение скорости равномерного движения v = ds/dt вместо ds размерность длины L и вместо dt размерность времени T, получим dim v = L / T =LT-1 Подставив в определяющее уравнение ускорения a = dv/dt вместо dt размерность времени T и вместо dv найденную выше размерность скорости LT-1 , получим dim a = LT-2 Зная размерность ускорения по определяющему уравнению силы F = ma, получим: dim F = M∙LT-2 = LMT-2 Зная размерность силы, можно найти размерность работы, затем 13 размерность мощности и т. д.

Принципы построения системы единиц величин Примечание: Если уравнение связи содержит числовой коэффициент, отличный от единицы, то для образования когерентной единицы SI в правую часть уравнения подставляют величины со значениями в единицах SI, дающие после умножения на коэффициент общее числовое значение, равное единице. 14

Принципы построения системы единиц величин Например, если для образования когерентной единицы энергии применяют уравнение где m – масса тела; v – его скорость, то когерентную единицу энергии можно образовать двумя путями: Следовательно, когерентной единицей SI является джоуль, равный ньютону, умноженному на метр. В рассмотренных случаях он равен кинетической энергии тела массой 2 кг, движущегося со скоростью 1 м/с, или тела массой 1 кг, движущегося со скоростью м/с. 15

Международная система единиц (SI) На территории РФ система единиц (СИ) действует с 01. 1982 г. В соответствии с ГОСТ 8. 417 -81 (Сейчас ГОСТ 8. 417 -2002) В настоящее время включает 7 основных единиц 16

Определение и содержание основных единиц СИ n n n Определение и содержание основных единиц СИ. В соответствии с решениями Генеральной конференции по мерам и весам (ГКМВ), принятыми в разные голы, в настоящее время действуют следующие определения основных единиц СИ. Единица длины - метр- длина пути, проходимого светом в вакууме за 1/299792458 доли секунды (решение XVII ГКМВ в 1983 г.). Единица массы - килограмм - масса, равная массе международного прототипа килограмма (решение I ГКМВ в 1889 г.). Единица времени - секунда - продолжительность 9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133, не возмущенного внешними полями (решение XIII ГКМВ в 1967 г.). Единица силы электрического тока - ампер -сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, создал бы между этими проводниками силу, равную 2 10 -7 Н на каждый метр длины (одобрено IX ГКМВ в 1948 г.). 17

Определение и содержание основных единиц СИ n n n Единица термодинамической температуры - кельвин (до 1967 г. имел наименование градус Кельвина) - 1/273, 16 часть термодинамической температуры тройной точки воды. Допускается выражение термодинамической температуры в градусах Цельсия (резолюция XIII ГКМВ в 1967 г.). Единица силы света - кандела - сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540∙ 1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср (резолюция XVI ГКМВ в 1979 г.). Единица количества вещества - моль - количество вещества системы, содержащей столько же структурных элементов, сколько атомов содержится в нуклиде углерода-12 массой 0, 012 кг (резолюция XIV ГКМВ в 1971 г.) 18

Определение и содержание основных единиц СИ n n Моль не является в чистом виде основной единицей, поскольку имеет связь с другой основной единицей - килограммом. Вообще говоря, широкого применения, как другие основные единицы СИ, единица количества вещества не получила. Эталоны моля до сих пор не созданы. Одной из причин здесь является то, что масса одного моля для различных веществ (структурных элементов) различна. В последние годы метрологи на научных конференциях предлагают исключить моль из числа основных единиц СИ, переведя ее в разряд специальной единицы массы или производной величины. Однако в последние годы произошел «поворот» в деятельности по оценке количества вещества, связанный с применением метрологии в медицине, химии, фармацевтике, пищевой промышленности, охране окружающей среды: Международный комитет мер и весов создал новый Консультативный комитет по количеству вещества, ведется международный «проект Авогадро» в целях создания нового эталона массы на базе чистого изотопа кремния, с 1999 г. Официально введена новая производная единицы SI - катал (моль в секунду) для измерения каталитической активности ферментов. Единица была принята по ходатайству Консультативного комитета по единицам (ККЕ), Международной федерации клинической химии и лабораторной медицины, Международного союза биохимиков. 19

ГОСТ 8. 417 -2002 ГСИ. Единицы величин Образование производных единиц величин: 1. из наименований и обозначений основных единиц: Обозначение Единица измерений международно е русско е Размерность Выражение через основные единицы Площадь квадратный метр m 2 м 2 L 2 m 2 Объём кубический метр m 3 м 3 L 3 m 3 Скорость метр в секунду m/s м/с LT-1 m-1∙kg∙s-2 Плотность кубический метр на килограмм m 3/kg м 3/кг L 3 M-1 m 3∙kg-1 Наименование величины 20

ГОСТ 8. 417 -2002 ГСИ. Единицы величин Образование производных единиц величин: 2. с использованием специальных наименований и обозначений: Обозначение Наименование величины Единица измерени международно й е русско е Размерность Выражение через основные единицы Частота герц Hz Гц T-1 s-1 Сила ньютон N Н LMT-2 m∙kg∙s-2 Давление паскаль Pa Па L-1 MT-2 m-1∙kg∙s-2 Энергия, работа, джоуль количество теплоты J Дж L 2 MT-2 m 2∙kg∙s-2 Мощность ватт W Вт L 2 MT-3 m 2∙kg∙s-3 Электрический заряд кулон C Кл TI s∙A 21

ГОСТ 8. 417 -2002 ГСИ. Единицы величин Образование производных единиц величин: 3. из наименований и обозначений основных и специальных наименований и обозначений производных единиц: Обозначение Единица измерений международно е русско е Размерность Выраже-ние через основные единицы Момент силы ньютон-метр N∙m Н∙м L 2 M-2 T m 2∙kg-2∙s Теплоемкость джоуль на кельвин J/ К Дж/К L 2 MT-2 -1 m∙kg∙s-2 Напряжённость электрического поля вольт на метр V/m В/м LMT-3 I-1 m∙kg∙s-3∙A-1 Яркость кандела на квадратный метр kd/m 2 кд/м 2 L-2 J m-2∙kd Наименование величины 22

ГОСТ 8. 417 -2002 ГСИ. Единицы величин Образование производных единиц величин: 4. с использованием кратных и дольных приставок и множителей: Десятичный множитель Приставка Обозначение Десямежду- русское тичный множинародтель ное Приставка Обозначение между- русское народное 1015 пета Р П 10 -1 деци d д 1012 тера Т Т 10 -2 санти c с 109 гига G Г 10 -3 милли m м 106 мега М М 10 -6 микро μ мк 103 кило k к 10 -9 нано n н 102 гекто h г 10 -12 пико p п 101 дека da да 10 -15 фемто f ф 23

ГОСТ 8. 417 -2002 ГСИ. Единицы величин Из правил написания единиц величин: Правило Правильно Неправильно 100 к. Вт 20 °С 80 % 100 к. Вт 20°С 80% 30° 30 ° При наличии десятичной дроби в числовом значении обозначение помещают за всеми цифрами 423, 06 м 423 м, 06 Числовые значения с предельными отклонениями заключают в скобки, а обозначения единиц помещают за скобками (100, 0 ± 0, 1) кг 100, 0 ± 0, 1 кг Между последней цифрой числа и обозначением единицы оставляют пробел Исключения составляют обозначения в виде знака, поднятого над строкой, перед которым пробел не оставляют 24

Первая система единиц физических величин, хотя она и не являлась еще системой единиц в современном понимании, была принята Национальным собранием Франции в 1791 г. Она включала в себя единицы длины, площади, объема, вместимости и массы, основными из которых были две единицы: метр и килограмм.

Систему единиц как совокупности основных и производных единиц впервые в 1832 г. предложил немецкий ученый К. Гаусс. Он построил систему единиц, где за основу принял единицы длины (миллиметр), массы (миллиграмм) и времени (секунда), и назвал ее абсолютной системой.

С развитием физики и техники появились другие системы единиц физических величин, базирующиеся на метрической основе. Все они были построены по принципу, разработанному Гауссом. Эти системы нашли применение в разных отраслях науки и техники. Разработанные в то время измерительные средства градуированы в соответствующих единицах, находят применение и в настоящее время.

Многообразие единиц измерения физических величин и систем единиц осложняло их применение. Одни и те же уравнения между величинами имели различные коэффициенты пропорциональности. Свойства материалов, процессов выражались различными числовыми значениями. Международный комитет по мерам и весам выделил из своего состава комиссию по разработке единой Международной системы единиц. Комиссия разработала проект Международной системы единиц, который был утвержден XI Генеральной конференцией по мерам и весам в I960 г. Принятая система была названа Международной системой единиц, сокращенно СИ (SI - начальные буквы наименования System International).

Учитывая необходимость охвата Международной системой единиц всех областей науки и техники, в ней в качестве основных выбраны семь единиц. В механике такими являются единицы длины, массы и времени, в электричестве добавляется единица силы электрического тока, в теплоте - единица термодинамической температуры, в оптике - единица силы света, в молекулярной физике, термодинамике и химии - единица количества вещества. Эти семь единиц соответственно: метр, килограмм, секунда, ампер, Кельвин, кандела и моль - и выбраны в качестве основных единиц СИ (табл. 2.1).

Единица длины (метр) - длина пути, проходимого светом в вакууме за 1/299 792 458 долю секунды.

Единица массы (килограмм) - масса, равная массе международного прототипа килограмма.

Единица времени (секунда) - продолжительность 9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Единица силы электрического тока (ампер) - сила неизменяющегося тока, который, проходя по двум нормальным прямолинейным проводникам бесконечной длины и ничтожно малой площади круглого поперечного сечения, расположенным на расстоянии I м один от другого в вакууме, вызывает между проводниками силу взаимодействия, равную 2- Ю~7Н на каждый метр длины.

2.1. Основные единицы СИ

Единица термодинамической температуры (Кельвин) - 1/273,16 термодинамической температуры тройной точки воды. Допускается использовать также шкалу Цельсия.

Единица силы света (кандела) - сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Единица количества вещества (моль) - количество веществ системы, содержащей столько же структурных элементов, сколько атомов содержится вуглероде-12 массой 0,012 кг.

Основные единицы Международной системы имеют удобные для практических целей размеры и широко применяются в соответствующих областях измерений.

Международная система единиц содержит также две дополнительные единицы: для плоского угла - радиан и для телесного угла - стерадиан (табл. 2.1).

Радиан (рад) - единица плоского угла, равная углу между двумя радиусами окружности, длина дуги между которыми равна радиусу. В градусном исчислении I рад = 57

Стерадиан (ср) - единица, равная телесному углу с вершиной в центре сферы, вырезающему на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы. Телесный угол £} измеряют косвенно - путем измерения плоского угла а при вершине конуса с последующим вычислением по формуле

Телесному углу в I ср соответствует плоский угол, равный 65

Угловые единицы не могут быть введены в число основных, гак как это вызвало бы затруднение в трактовке размерностей величин, связанных с вращением (дуги окружности, площади круга, работы пары сил и т. д.). Вместе с тем угловые единицы нельзя считать и производными, так как они не зависят от выбора основных единиц. Действительно, при любых единицах длины размеры радиана и стерадиана остаются неизменными.

Из семи основных единиц и двух дополнительных в качестве производных выводят единицы для измерений физических величин во всех областях науки и техники.

В решениях XI и XII Генеральных конференций по мерам и весам даны 33 производные единицы СИ. Примеры производных единиц, имеющих собственные наименования, приведены в табл. 2.2.

Важным принципом, который соблюден в Международной системе единиц, является ее когерентность (согласованность). Так, выбор основных единиц системы обеспечил полную согласованность механических и электрических единиц. Например, ватт - единица механической мощности (равный джоулю в секунду) равняется мощности, выделяемой электрическим током силой I ампер при напряжении I вольт.

В СИ, подобно другим когерентным системам единиц, коэффициенты пропорциональности в физических уравнениях, определяющих производные единицы, равны безразмерной единице.

Когерентные производные единицы Международной системы образуются с помощью простейших уравнений связи между величинами (определяющих уравнений), в которых величины приняты равными единицам СИ.

Например, единица скорости образуется с помощью уравнения, определяющего скорость прямолинейно и равномерно движущейся точки V=у, где V- скорость;/ - длина пройденного пути;/ - время. Подстановка вместо /, / и К их единиц СИ дает [ V = [/]/М = I м/с.

2.2. Производные единицы СИ, имеющие собственное наименование

Следовательно, единицей скорости СИ является метр в секунду. Он равен скорости прямолинейно и равномерно движущейся точки, при которой эта точка за время / I с перемешается на расстояние 1 м.

Например, для образования единицы энергии используется уравнение Т = тУ где Т - кинетическая энергия; т - масса тела; V - скорость движения точки, то когерентная единица энергии СИ образуется следующим образом:

То есть единицей энергии в СИ является джоуль (равный ньютон-метру). Он равен кинетической энергии тела массой 2 кг, движущегося со скоростью I м/с.

В Международной системе единиц, как и в других системах единиц физических величин, важную роль играет размерность.

Размерностью называют символическое (буквенное) обозначение зависимости производных величин (или единиц) от основных.

Например, если какая-либо физическая величина выражается через длину L, массу М и время Г(являющихся основными величинами в системе единиц типа LMT) формулой X = f(L, М, 7), то можно показать, что результаты измерений будут независимы от выбора единиц в том случае, если функция/будет однородной функцией длины, массы и времени. Пусть X = LpM"Tr. Размерность величины А выражается формулой 6тХ= 11МЯТ где dim - сокращение от слова dimension - размерность.

Данная формула показывает, как производная величина связана с основными величинами, и называется формулой размерности.

Так как всякая величина может быть представлена как произведение ее числового значения {Л} на единицу Х X = {ЩХ, ее можно представить в виде {Х\Х = ЩР{М)Я{Т)Г1ЛРМЯТГ.

Равенство величин в этой формуле распадается на два равенства: равенство числовых значений

Размерность служит качественной характеристикой величины и выражается произведением степеней основных величин, через которые может быть определена.

Размерность не полностью отражает все качественные особенности величин. Встречаются различные величины, имеющие одинаковую размерность. Например, работа и момент силы, сила тока и магнитодвижущая сила и др.

Размерность играет важную роль при проверке правильности сложных расчетных формул в теории подобия и теории размерностей.


2.4. Преимущества Международной системы единиц

Основными преимуществами Международной системы единиц являются:

Унификация единиц физических величин на базе СИ. Для каждой физической величины устанавливается одна единица и система образования кратных и дольных единиц от нее с помощью множителей (табл. 2.3);

Система СИ является универсальной системой. Она охватывает все области науки, техники и отрасли экономики;

Основные и большинство производных единиц СИ имеют удобные для практического применения размеры. В системе разграничены единицы массы (килограмм) и силы (ньютон);

Упрощается запись уравнений и формул в различных областях науки и техники. В СИ для всех видов энергии (механической, тепловой, электрической и др.) установлена одна, общая единица - джоуль.

2.3. Множители и приставки для образования десятичных кратных и дольных единиц и их обозначение

  • 4. Системы фв и их единиц. Уравнения связи между числовыми значениями фв. Основные и производные фв.
  • 5. Принципы построения систем единиц фв.
  • 6. Международная система единиц (си). Основные и дополнительные единицы системы си.
  • 7. Воспроизведение единиц фв и передача их р-ров. Понятие о единстве измерений.
  • 8. Воспроизведение единиц фв и передача их р-ров. Эталоны единиц фв.
  • 9.Понятие о единице величины и измерении. Основное уравнение измерения.
  • 10. Классификация измерений.
  • 11. Шкалы измерений.
  • 12. Измерение и его основные операции. Структурная схема измерения.
  • 13. Основные элементы процесса измерений.
  • 14. Си. Классификация си.
  • 15. Принципы построения си. Методы измерений.
  • 16. Основные этапы измерений.
  • 17. Постулаты теории измерений.
  • 18. Качество измерений. Основные определения.
  • 19. Теория погрешностей измерений.
  • 20. Метрологические характеристики си.
  • 21. Классы точности си.
  • 23. Выбор си. Основные принципы выбора си.
  • 24. Измерительные системы. Основные определения. Классификация измерительных систем.
  • 26. Основные понятия теории метрологической надежности. Метрологическая надежность и межповерочные интервалы.
  • 28. Методики выполнения измерений. Общие требования к разработке, оформлению, аттестации.
  • 29. Воспроизведение единиц фв и передача их размеров. Поверочные схемы.
  • 30. Воспроизведение единиц фв и передача их размеров. Поверка си. Виды поверок.
  • 31.Калибровка си. Российская система калибровки.
  • 32. Понятие об испытании и контроле. Основные принципы государственной системы испытаний.
  • 33. Метрологическая аттестация си и испытательного оборудования.
  • 34. Испытания с целью утверждения типа средств измерений. Технология проведения испытаний.
  • 35. Метрологическая экспертиза. Анализ состояния средств измерения
  • 36. Система сертификации си. Основные положения и порядок проведения работ в рамках системы сертификации си.
  • 37. Правовые основы метрологической деятельности в рф. Основные положения закона рф «Об обеспечении единства измерений»
  • 38. Государственная метрологическая служба в рф. Организационные основы государственной метрологической службы.
  • 39. Государственная метрологическая служба в рф. Государственный метрологический контроль.
  • 41. Международные организации по метрологии. Международная организация мер и весов
  • 42. Международные организации по метрологии. Международная организация законодательной метрологии
  • 43. Основные международные нормативные документы по метрологии.
  • 44. Метрология в условиях глобализации мировой экономики и торговли.
  • 5. Принципы построения систем единиц фв.

    Образование системы единиц базируется на объективных закономерных связях между физическими величинами и на произвольной, но разумной воле людей и их соглашениях, заключительным из которых является принятое на Генеральной конференции по мерам и весам.

    При построении или введении новой системы единиц ученые руководствуются только одним единственным принципом - практической целесообразностью, т.е. удобством применения единиц в деятельности человека. В основу этого принципа положены следующие базовые критерии:

    Простота образования производных ФВ и их единиц, т.е. приравнивание к единице коэффициентов пропорциональности в уравнениях связи;

    Высокая точность материализации основных и производных единиц и передачи их размера нижестоящим эталонам;

    Неуничтожаемость эталонов основных единиц, т.е. возможность их воссоздания в случае утраты;

    Преемственность единиц, сохранение их размеров и наименований при введении новой системы единиц, что связано с исключением материальных и психологических затрат;

    Близость размеров основных и производных единиц к размерам ФВ, наиболее часто встречающихся в практике;

    Долговременность хранения основных и производных единиц их эталонами;

    Выбор в качестве основных минимального числа ФВ, отражающих наиболее общие свойства материи.

    Приведенные критерии вступают в противоречие, поэтому путем соглашения выбирается наиболее выгодный для практики вариант.

    6. Международная система единиц (си). Основные и дополнительные единицы системы си.

    Единая м/ународная система единиц (система СИ) была принята XI Генеральной конференцией по мерам и весам в 1960 г. На территории нашей страны система единиц СИ действует с 1 января 1982 г. в соответствии ГОСТ 8.417-81 "ГСИ. Единицы физических величин".

    Система СИ - единственная система единиц ФВ, к-ая принята и исп в большинстве стран мира. Это обусловлено ее достоинствами и преимуществами перед другими системами единиц, к которым относятся:

    Универсальность, т.е. охват всех областей науки и техники;

    Унификация всех областей и видов измерений;

    Когерентность величин;

    Возможность воспроизведения единиц с высокой точностью в соответствии с их определением;

    Упрощение записи формул в физике, химии, а также в технических науках в связи с отсутствием переводных коэффициентов;

    Уменьшение числа допускаемых единиц;

    Единая система образования кратных и дольных единиц, имеющих собственные наименования;

    Облегчение педагогического процесса в средней и высшей школах, так как отпадает необходимость в изучении множества систем единиц и внесистемных единиц;

    Лучшее взаимопонимание при развитии научно-технических и экономических связей между различными странами.

    Основные единицы системы СИ:

    Метр -ед изм длины

    Секунда -ед изм времени

    Килограмм –ед изм массы

    Кельвин –ед изм темп-ры

    Ампер -ед изм силы тока

    Канделла -ед изм силы света

    Моль - ед изм кол-ва в-ва

    Дополнительные единицы:

    Радиан - это ед изм плоского угла

    Стерадиан - это ед изм телесного угла

    Проблема выбора системы единиц физических величин совсем недавно не могла полностью относиться к нашему произволу. С точки зрения материалистической философии нам непросто было убедить кого-либо в том, что большой раздел естественных наук, относящийся к обеспечению единства измерений, в основе своей опирается на зависимость основных моментов от нашего сознания. Можно обсуждать, хорошо или плохо составлена система единиц физических единиц, но факт, что в основе своей любая система величин и единиц имеет произвол, связанный с человеческим сознанием, остается бесспорным.

    Единицы физических величин подразделяются на основные и производные. До 1995 г. имели место еще дополнительные единицы - единицы плоского и телесного угла, радиан и стерадиан,- но с целью упрощения системы эти единицы были переведены в категорию безразмерных производных единиц.

    Основными физическими величинами являются величины, выбранные произвольно и независимо друг от друга.

    Основные единицы выбираются так, чтобы пользуясь закономерной связью между величинами можно было бы образовать единицы других величин. Соответственно, образованные таким образом величины и единицы называются производными.

    Самый главный вопрос при построении систем единиц состоит в том, сколько должно быть основных единиц или, более точно, какими принципами нужно руководствоваться при построении той или иной системы? Частично в метрологической литературе можно найти утверждение, что главный принцип системы должен состоять в минимальном количестве основных единиц. На самом деле такой подход является неверным, так как следуя этому принципу такая величина и единица может быть одна. Например, через энергию можно выразить практически любую физическую величину, т. к. в механике энергия равна:

    • кинетическая энергия

    где m - масса, -v - скорость движения тела;

    • потенциальная энергия

    (1.4)

    где m - масса, g - ускорение, Н - высота (длина).

    В электрических измерениях энергия заряда

    (1.5)

    где q - заряд, U - разность потенциалов.

    В оптике и квантовой механике энергия фотона

    где h - постоянная Планка, v - частота излучения.

    В теплофизике энергия теплового движения частиц

    (1.7)

    где k - постоянная Больцмана, Т - температура.

    Используя указанные законы и опираясь на закон сохранения энергии, можно определить любую физическую величину, независимо оттого, к каким явлениям она относится - к механическим, электрическим, оптическим или тепловым.

    Для того чтобы сказанное выглядело более убедительно, рассмотрим основные механические единицы, принятые в большинстве систем - единицы длины, времени и массы. Эти величины являются основными, т. е. выбраны произвольно и независимо друг от друга. Рассмотрим теперь, какова степень этой независимости и нельзя ли сократить число произвольно выбранных основных механических единиц.

    Большинство из нас привыкло к тому, что второй закон Ньютона записывается как

    (1.8)

    где F - сила взаимодействия, m - масса тела, а - ускорение движения, и это выражение является определением инерционной массы. С другой стороны, масса гравитационная согласно закону всемирного тяготения определяется из соотношения

    (1.9)

    где r - расстояние между телами и γ- гравитационная постоянная, равная

    (1.10)

    Рассматривая, например, равномерное движение одного тела вокруг другого по окружности, когда сила инерции Fi равна силе гравитации Fg , и учитывая, что масса m в обоих законах есть одна и та же величина, получим:

    (1.11)

    (1.12)

    где Т - период обращения, получим

    (1.13)

    Это есть выражение для третьего закона Кепплера, давно известного для движения небесных тел, т. е. мы получили связь между временем Т, длиной r и массой m в виде

    (1.14)

    Это означает, что достаточно положить коэффициент К равным единице, и единица массы будет определена через длину и время. Значение этого коэффициента

    (1.15)

    является следствием только того факта, что мы произвольно выбрали единицу массы и для приведения ситуации в соответствие с физическими законами обязаны в законе Кепплера ввести дополнительный множитель К. Приведенный пример наглядно показывает, что число основных единиц может быть изменено как в меньшую, так и в большую сторону, т. е. полностью зависит от нашего выбора, определяемого удобством практического использования системы.

    Естественно, что выбрав произвольно какую-либо единицу в качестве основной, мы произвольно выбираем размер этой единицы. В механических измерениях длину, время и массу мы имеем возможность сравнивать с любыми выбранными в качестве исходных одноименными величинами. По мере развития метрологии определения размера величин основных единиц неоднократно изменялись, тем не менее ни на физических законах, ни на единстве измерений это не отразилось.

    Покажем, что произвол выбора размера единицы имеет место не только для основных, произвольно выбранных величин, но и для величин производных, т. е. связанных с основным каким-либо физическим законом. В качестве примера вернемся к определениям силы через инерционные свойства тел или через гравитационные свойства. Мы предполагаем, что основными величинами являются длина, время и масса. Ничто не мешает считать равным единице коэффициент пропорциональности в законе всемирного тяготения, т. е. считать, что

    (1.16)

    Тогда во втором законе Ньютона мы обязаны будем ввести коэффициент пропорциональности, называемый инерционной постоянной, т. е.

    (1.17)

    Значение инерционной постоянной должно равняться

    (1.18)

    Аналогичную картину можно проследить, выражая и принимая единицу площади. Мы привыкли к тому, что единицей площади считается площадь квадрата со стороной в единицу длины - квадратный метр, квадратный сантиметр и т. д. Однако никто не запрещает в качестве единицы площади выбрать площадь круга с диаметром в 1 метр, т. е. считать, что

    (1.19)

    В этом случае площадь квадрата выразится

    (1.20)

    Такая единица площади, называемая «круглый метр», очень удобна в измерении площадей кругов. Очевидно, что «круглый метр» будет в 4/π раз меньше «квадратного метра».

    Следующий вопрос в проблеме выбора единиц системы состоит в определении целесообразности введения новых основных единиц при рассмотрении нового класса физических явлений. Начнем с электромагнитных явлений. Хорошо известно, что электрические явления опираются на закон Кулона, связывающий механические величины - силу взаимодействия и расстояния между зарядами - с электрической величиной - зарядом:

    (1.21)

    В законе Кулона, как и в других законах, где упоминаются векторные величины, мы опускаем единичный вектор с целью упрощения. В законе Кулона коэффициент пропорциональности равен 1. Если принять это за основу, что и сделано в некоторых системах единиц, то электрическая основная единица не нужна, т. к. единицу силы тока можно получить из соотношения

    (1.22)

    где q - заряд, определенный законом Кулона; t - время. Все остальные единицы электрических величин определяются из законов электростатики и электродинамики. Тем не менее в большинстве систем единиц, в том числе и в системе СИ, для электрических явлений вводится произвольно своя электрическая основная единица. В системе СИ это Ампер. Выбрав Ампер произвольно, заряд выразится из соотношения как

    (1.23)

    В результате повторилась ситуация, рассмотренная выше, когда одна и та же физическая величина определяется дважды. Один раз через величины механические - формула (1.21) .другой раз через Ампер-формула (1.23). Такая неоднозначность заставляет ввести в закон Кулона дополнительный коэффициент, получивший название «диэлектрическая проницаемость вакуума». Закон Кулона приобретает вид:

    О физическом смысле диэлектрической постоянной вакуума часто задают вопросы, когда хотят выяснить степень понимания сущности закона Кулона. С метрологической точки зрения все просто и понятно: вводя произвольно основную единицу электричества - ампер - мы должны принять меры к тому, чтобы имелось соответствие механических единиц, введенных ранее, их новому возможному выражению с использованием ампера.

    Точно такая же ситуация может быть прослежена в температурных измерениях с введением произвольно основной единицы - Кельвина, а также в оптических измерениях с введением канделы.

    Здесь подробно рассмотрена ситуация с выбором единиц основных физических величин и с выбором их размера для того, чтобы доказать суть главного принципа построения систем единиц физических единиц.

    Этот принцип - удобство практического использования. Только этими соображениями определяется число основных единиц, выбор их размера, и все дополнительные, вторичные принципы отталкиваются от этого как от основного. Таковым, например, является известный принцип, гласящий, что в качестве основной величины нужно выбрать такую, единица которой может быть воспроизведена с наивысшей возможной точностью. Однако это желательно, но в ряде случаев нецелесообразно. В частности в механических измерениях единица частоты - герц - воспроизводится с наивысшей точностью, тем не менее в разряд основных единиц частота не попала.

    В электрических измерениях точнее Ампера может быть воспроизведен Вольт - единица разности потенциалов. В оптике достигнута предельная точность в измерениях энергии путем счета квантов. По указанным причинам общепризнанность выражения величин и единиц становится преобладающей над стремлением выбрать за основную единицу ту, которая точнее всего воспроизводится.

    Окончательным подтверждением выбора системы единиц на основе принципа удобства использования являются два момента.

    Первый - это факт присутствия в международной системе СИ двух основных единиц количества вещества - килограмма и моля. Ничем, кроме удобства использования в химических процессах введение еще одной основной единицы - моля, - этот факт не объяснишь.

    Второй - факт использования в целом ряде случаев систем единиц, отличных от системы СИ. Многие годы и десятилетия метрологи пытаются оставить одну единственную систему единиц. Тем не менее, в расчетах атомных и молекулярных структур система СИ неудобна, и люди продолжают использовать атомную систему единиц, в которой основными являются величины, определяемые размерами атома и процессами, происходящими в атоме. При рассмотрении различных систем единиц мы подробно остановимся на построении этой системы. Точно также система СИ оказывается неудобной при измерениях расстояний до космических объектов. В этой области сложилась своя специфическая система единиц и величин.

    выбор в метрологии системы единиц физических величин в основном связан с удобством их использования и в большой степени опирается на традиции в решении проблемы обеспечения единства измерений.