Свойства и способы расчета средних арифметических величин. Свойства средней арифметической и расчет ее способом моментов Задания для самостоятельной работы

4. Четные и нечетные.

В чётных вариационных рядах сумма частот или общее число наблюдений выражено чётным числом, в нечётных ― нечётным.

5. Симметричные и асимметричные.

В симметричном вариационном ряду все виды средних величин совпадают или очень близки (мода, медиана, среднее арифметическое).

В зависимости от характера изучаемых явлений, от конкретных задач и целей статистического исследования, а также от содержания исходного материала, в санитарной статистике применяются следующие виды средних величин:

· структурные средние (мода, медиана);

· средняя арифметическая;

· средняя гармоническая;

· средняя геометрическая;

· средняя прогрессивная.

Мода (М о) - величина варьирующего признака, которая более часто встречается в изучаемой совокупности т.е. варианта, соответствующая наибольшей частоте. Находят ее непосредственно по структуре вариационного ряда, не прибегая к каким-либо вычислениям. Она обычно является величиной очень близкой к средней арифметической и весьма удобна в практической деятельности.

Медиана (М е) - делящая вариационный ряд (ранжированный, т.е. значения вариант располагаются в порядке возрастания или убывания) на две равные половины. Медиана вычисляется при помощи так называемого нечетного ряда, который получают путем последовательного суммирования частот. Если сумма частот соответствует четному числу, тогда за медиану условно принимают среднюю арифметическую из двух средних значений.

Мода и медиана применяются в случае незамкнутой совокупности, т.е. когда наибольшая или наименьшая варианты не имеют точной количественной характеристики (например, до 15 лет, 50 и старше и т.п.). В этом случае среднюю арифметическую (параметрические характеристики) рассчитать нельзя.

Средня я арифметическая - самая распространенная величина. Средняя арифметическая обозначается чаще через М .

Различают среднюю арифметическую простую и взвешенную.

Средняя арифметическая простая вычисляется:

― в тех случаях, когда совокупность представлена простым перечнем знаний признака у каждой единицы;

― если число повторений каждой варианты нет возможности определить;

― если числа повторений каждой варианты близки между собой.

Средняя арифметическая простая исчисляется по формуле:

где V - индивидуальные значения признака; n - число индивидуальных значений; - знак суммирования.

Таким образом, простая средняя представляет собой отношение суммы вариант к числу наблюдений.

Пример: определить среднюю длительность пребывания на койке 10 больных пневмонией:

16 дней - 1 больной; 17–1; 18–1; 19–1; 20–1; 21–1; 22–1; 23–1; 26–1; 31–1.

койко-дня.

Средняя арифметическая взвешенная исчисляется в тех случаях, когда индивидуальные значения признака повторяются. Ее можно вычислять двояким способом:

1. Непосредственным (среднеарифметическим или прямым способом) по формуле:

где P - частота (число случаев) наблюдений каждой варианты.

Таким образом, средняя арифметическая взвешенная представляет собой отношение суммы произведений вариант на частоты к числу наблюдений.

2. С помощью вычисления отклонений от условной средней (по способу моментов).

Основой для вычисления взвешенной средней арифметической является:

― сгруппированный материал по вариантам количественного признака;

― все варианты должны располагаться в порядке возрастания или убывания величины признака (ранжированный ряд).

Для вычисления по способу моментов обязательным условием является одинаковый размер всех интервалов.

По способу моментов средняя арифметическая вычисляется по формуле:

,

где М о - условная средняя, за которую чаще принимают величину признака, соответствующую наибольшей частоте, т.е. которая чаще повторяется (Мода).

i - величина интервала.

a - условное отклонение от условий средней, представляющее собой последовательный ряд чисел (1, 2 и т.д.) со знаком + для вариант больших условной средней и со знаком–(–1, –2 и т.д.) для вариант, которые ниже условной средней. Условное же отклонение от варианты, принятой за условную среднюю равно 0.

P - частоты.

Общее число наблюдений или n.

Пример: определить средний рост мальчиков 8 лет непосредственным способом (таблица1).

Т а б л и ц а 1

Рост в см

мальчиков P

Центральная

варианта V

Центральная варианта ― середина интервала ― определяется как полу сумма начальных значений двух соседних групп:

; и т.д.

Произведение VP получают путем умножения центральных вариант на частоты ; и т.д. Затем полученные произведения складывают и получают , которую делят на число наблюдений (100) и получают среднюю арифметическую взвешенную.

см.

Эту же задачу решим по способу моментов, для чего составляется следующая таблица 2:

Т а б л и ц а 2

Рост в см (V)

мальчиков P

В качестве М о принимаем 122, т.к. из 100 наблюдений у 33 человек рост был 122см. Находим условные отклонения (a) от условной средней в соответствии с вышесказанным. Затем получаем произведение условных отклонений на частоты (aP) и суммируем полученные величины (). В итоге получится 17. Наконец, данные подставляем в формулу.

Свойство 1. Средняя арифметическая постоянной величины равна этой постоянной: при

Свойство 2. Алгебраическая сумма отклонений индивидуальных значений признака от средней арифметической равна нулю: для несгруппированных данных и для рядов распределения.

Это свойство означает, что сумма положительных отклонений равна сумме отрицательных отклонений, т.е. все отклонения, обусловленные случайными причинами взаимно погашаются.

Свойство 3. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической есть число минимальное: для несгруппировочных данных и для рядов распределения. Это свойство означает, что сумма квадратов отклонений индивидуальных значений признака от средней арифметической всегда меньше суммы отклонений вариантов признака от любого другого значения, даже мало отличающегося от средней.

Второе и третье свойство средней арифметической применяются для проверки правильности расчета средней величины; при изучении закономерностей изменения уровней ряда динамики; для нахождения параметров уравнения регрессии при изучении корреляционной связи между признаками.

Все три первых свойства выражают сущностные черты средней как статистической категории.

Следующие свойства средней рассматриваются как вычислительные, поскольку они имеют некоторое прикладное значение.

Свойство 4. Если все веса (частоты) разделить на какое-либо постоянное число d, то средняя арифметическая не изменится, поскольку это сокращение в равной степени коснется и числителя и знаменателя формулы расчета средней.

Из этого свойства вытекают два важных следствия.

Следствие 1. Если все веса равны между собой, то вычисление средней арифметической взвешенной можно заменить вычислением средней арифметической простой.

Следствие 2 . Абсолютные значения частот (весов) можно заменять их удельными весами.

Свойство 5. Если все варианты разделить или умножить на какое-либо постоянное число d, то средняя арифметическая уменьшиться или увеличиться в d раз.



Свойство 6. Если все варианты уменьшить или увеличить на постоянной число A, то и со средней произойдут аналогичные изменения.

Прикладные свойства средней арифметической можно проиллюстрировать, применив способ расчета средней от условного начала (способ моментов).

Средняя арифметическая способом моментов вычисляется по формуле:

где А – середина какого-либо интервала (предпочтение отдается центральному);

d – величина равновеликого интервала, или наибольший кратный делитель интервалов;

m 1 – момент первого порядка.

Момент первого порядка определяется следующим образом:

.

Технику применения этого способа расчета проиллюстрируем по данным предшествующего примера.

Таблица 5.6

Стаж работы, лет Число рабочих Середина интервала x
до 5 2,5 -10 -2 -28
5-10 7,5 -5 -1 -22
10-15 12,5
15-20 17,5 +5 +1 +25
20 и выше 22,5 +10 +2 +22
Итого Х Х Х -3

Как видно из расчетов, приведенных в табл. 5.6 из всех вариантов вычитается одно из их значений 12,5, которое приравнивается нулю и служит условным началом отсчета. В результате деления разностей на величину интервала – 5 получают новые варианты.

Согласно итогу табл. 5.6 имеем: .

Результат вычислений по способу моментов аналогичен результату, который был получен применением основного способа расчета по средней арифметической взвешенной.

Структурные средние

В отличие от степенных средних, которые рассчитываются на основе использования всех вариант значений признака, структурные средние выступают как конкретные величины, совпадающие с вполне определенными вариантами ряда распределения. Мода и медиана характеризуют величину варианта, занимающего определенное положение в ранжированном вариационном ряду.

Мода – это величина признака, которая чаще всего встречается в данной совокупности. В вариационном ряду это будет варианта, имеющая наибольшую частоту.

Нахождение моды в дискретном ряду распределения не требует вычислений. Путем просмотра столбца частот находят наибольшую частоту.

Например, распределение рабочих предприятия по квалификации характеризуются данными табл. 5.7.

Таблица 5.7

Наибольшая частота в этом ряду распределения 80, значит мода равна четвертому разряду. Следовательно, наиболее часто встречаются рабочие, имеющие четвертый разряд.

Если ряд распределения интервальный , то по наибольшей частоте устанавливают только модальный интервал, а затем уже вычисляют моду по формуле:

,

где – нижняя граница модального интервала;

– величина модального интервала;

– частота модального интервала;

– частота предмодального интервала;

– частота послемодального интервала.

Вычислим моду по данным, приведенным в табл. 5.8.

Таблица 5.8

Это значит, что чаще всего предприятия имеют прибыль 726 млн р.

Практическое применение моды ограниченно. На значение моды ориентируются, когда определяют наиболее ходовые размеры обуви и одежды при планировании их производства и реализации, при изучении цен на оптовых и розничных рынках (метод основного массива). Моду используют вместо средней величины при подсчете возможных резервов производства.

Медиана соответствует варианте, стоящей в центре ранжированного ряда распределения. Это значение признака, которое делит всю совокупность на две равные части.

Положение медианы определяется ее номером (N).

где – число единиц совокупности. Используем данные примера, приведенные в табл. 5.7 для определения медианы.

, т.е. медиана равна средней арифметической из 100-го и 110-го значений признака. По накопленным частотам определяем, что 100-я и 110-я единицы ряда имеют величину признака, равную четвертому разряду, т.е. медиана равна четвертому разряду.

Медиана в интервальном ряду распределения определяется в следующем порядке.

1. Подсчитываются накопленные частоты по данному ранжированному ряду распределения.

2. На основе накопленных частот устанавливается медианный интервал. Он находится там, где первая накопленная частота равна или больше половины совокупности (всех частот).

3. Вычисляется медиана по формуле:

,

где – нижняя граница медианного интервала;

– величина интервала;

– сумма всех частот;

– сумма накопленных частот, предшествующих медианному интервалу;

– частота медианного интервала.

Вычислим медиану по данным табл. 5.8.

Первая накопленная частота, которая равна половине совокупности 30, значит медиана находится в интервале 500-700.

Это означает, что половина предприятий получает прибыль до 676 млн р., а другая половина свыше 676 млн р.

Медиану часто используют вместо средней величины, когда совокупность неоднородна, т.к. она не находится под влиянием крайних значений признака. Практическое применение медианы также связано с ее свойством минимальности. Абсолютная сумма отклонений индивидуальных значений от медианы есть величина наименьшая. Поэтому медиану применяют в расчетах при проектировании места расположения объектов, которые будут использоваться различными организациями и лицами.

Вариационный размах (или размах вариации) - это разница между максимальным и минимальным значениями признака:

В нашем примере размах вариации сменной выработки рабочих составляет: в первой бригаде R=105-95=10 дет., во второй бригаде R=125-75=50 дет. (в 5 раз больше). Это говорит о том, что выработка 1-й бригады более «устойчива», но резервов роста выработки больше у второй бригады, т.к. в случае достижения всеми рабочими максимальной для этой бригады выработки, ею может быть изготовлено 3*125=375 деталей, а в 1-й бригаде только 105*3=315 деталей.
Если крайние значения признака не типичны для совокупности, то используют квартильный или децильный размахи. Квартильный размах RQ= Q3-Q1 охватывает 50% объема совокупности, децильный размах первый RD1 = D9-D1охватывает 80% данных, второй децильный размах RD2= D8-D2 – 60 %.
Недостатком показателя вариационного размаха является, но что его величина не отражает все колебания признака.
Простейшим обобщающим показателем, отражающим все колебания признака, является среднее линейное отклонение , представляющее собой среднюю арифметическую абсолютных отклонений отдельных вариант от их средней величины:

,
для сгруппированных данных
,
где хi – значение признака в дискретном ряду или середина интервала в интервальном распределении.
В вышеприведенных формулах разности в числителе взяты по модулю, иначе, согласно свойству средней арифметической, числитель всегда будет равен нулю. Поэтому среднее линейное отклонение в статистической практике применяют редко, только в тех случаях, когда суммирование показателей без учета знака имеет экономический смысл. С его помощью, например, анализируется состав работающих, рентабельность производства, оборот внешней торговли.
Дисперсия признака – это средний квадрат отклонений вариант от их средней величины:
простая дисперсия
,
взвешенная дисперсия
.
Формулу для расчета дисперсии можно упростить:

Таким образом, дисперсия равна разности средней из квадратов вариант и квадрата средней из вариант совокупности:
.
Однако, вследствие суммирования квадратов отклонений дисперсия дает искаженное представление об отклонениях, поэтому ее на основе рассчитывают среднее квадратическое отклонение , которое показывает, на сколько в среднем отклоняются конкретные варианты признака от их среднего значения. Вычисляется путем извлечения квадратного корня из дисперсии:
для несгруппированных данных
,
для вариационного ряда

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность, тем более надежной (типичной) будет средняя величина.
Среднее линейное и среднее квадратичное отклонение - именованные числа, т. е. выражаются в единицах измерения признака, идентичны по содержанию и близки по значению.
Рассчитывать абсолютные показатели вариации рекомендуется с помощью таблиц.
Таблица 3 – Расчет характеристик вариации (на примере срока данных о сменной выработке рабочих бригады)


Число рабочих,

Середина интервала,

Расчетные значения

Итого:

Среднесменная выработка рабочих:

Среднее линейное отклонение:

Дисперсия выработки:

Среднее квадратическое отклонение выработки отдельных рабочих от средней выработки:
.

1 Расчет дисперсии способом моментов

Вычисление дисперсий связано с громоздкими расчетами (особенно если средняя величина выражена большим числом с несколькими десятичными знаками). Расчеты можно упростить, если использовать упрощенную формулу и свойства дисперсии.
Дисперсия обладает следующими свойствами:

  1. если все значения признака уменьшить или увеличить на одну и ту же величину А, то дисперсия от этого не уменьшится:

,

, то или
Используя свойства дисперсии и сначала уменьшив все варианты совокупности на величину А, а затем разделив на величину интервала h, получим формулу вычисления дисперсии в вариационных рядах с равными интервалами способом моментов:
,
где – дисперсия, исчисленная по способу моментов;
h – величина интервала вариационного ряда;
– новые (преобразованные) значения вариант;
А– постоянная величина, в качестве которой используют середину интервала, обладающего наибольшей частотой; либо вариант, имеющий наибольшую частоту;
– квадрат момента первого порядка;
– момент второго порядка.
Выполним расчет дисперсии способом моментов на основе данных о сменной выработке рабочих бригады.
Таблица 4 – Расчет дисперсии по способу моментов


Группы рабочих по выработке, шт.

Число рабочих,

Середина интервала,

Расчетные значения

Порядок расчета:


  1. рассчитываем дисперсию:

2 Расчет дисперсии альтернативного признака

Среди признаков, изучаемых статистикой, есть и такие, которым свойственны лишь два взаимно исключающих значения. Это альтернативные признаки. Им придается соответственно два количественных значения: варианты 1 и 0. Частостью варианты 1, которая обозначается p, является доля единиц, обладающих данным признаком. Разность 1-р=q является частостью варианты 0. Таким образом,


хi

Средняя арифметическая альтернативного признака
, т. к. p+q=1.

Дисперсия альтернативного признака
, т.к. 1-р=q
Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным признаком, и доли единиц, не обладающих этим признаком.
Если значения 1 и 0 встречаются одинаково часто, т. е. p=q, дисперсия достигает своего максимума pq=0,25.
Дисперсия альтернативного признака используется в выборочных обследованиях, например, качества продукции.

3 Межгрупповая дисперсия. Правило сложения дисперсий

Дисперсия, в отличие от других характеристик вариации, является аддитивной величиной. То есть в совокупности, которая разделена на группы по факторному признаку х, дисперсия результативного признака y может быть разложена на дисперсию в каждой группе (внутригрупповую) и дисперсию между группами (межгрупповую). Тогда, наряду с изучением вариации признака по всей совокупности в целом, становится возможным изучение вариации в каждой группе, а также между этими группами.

Общая дисперсия измеряет вариацию признака у по всей совокупности под влиянием всех факторов, вызвавших эту вариацию (отклонения). Она равна среднему квадрату отклонений отдельных значений признака у от общей средней и может быть вычислена как простая или взвешенная дисперсия.
Межгрупповая дисперсия характеризует вариацию результативного признака у , вызванную влиянием признака-фактора х , положенного в основу группировки. Она характеризует вариацию групповых средних и равна среднему квадрату отклонений групповых средних от общей средней :
,
где – средняя арифметическая i-той группы;
– численность единиц в i-той группе (частота i-той группы);
– общая средняя совокупности.
Внутригрупповая дисперсия отражает случайную вариацию, т. е. ту часть вариации, которая вызвана влиянием неучтенных факторов и не зависит от признака-фактора, положенного в основу группировки. Она характеризует вариацию индивидуальных значений относительно групповых средних, равна среднему квадрату отклонений отдельных значений признака у внутри группы от средней арифметической этой группы (групповой средней) и вычисляется как простая или взвешенная дисперсия для каждой группы:
или ,
где – число единиц в группе.
На основании внутригрупповых дисперсий по каждой группе можно определить общую среднюю из внутригрупповых дисперсий :
.
Взаимосвязь между тремя дисперсиями получила название правила сложения дисперсий , согласно которому общая дисперсия равна сумме межгрупповой дисперсии и средней из внутригрупповых дисперсий:

Пример . При изучении влияния тарифного разряда (квалификации) рабочих на уровень производительности их труда получены следующие данные.
Таблица 5 – Распределение рабочих по среднечасовой выработке.



п/п

Рабочие 4-го разряда

Рабочие 5-го разряда

Выработка
рабочего, шт.,

Выработка
рабочего, шт.,

1
2
3
4
5
6

7
9
9
10
12
13

7-10=-3
9-10=-1
-1
0
2
3

9
1
1
0
4
9

1
2
3
4

14
14
15
17

14-15=-1
-1
0
2

1
1
0
4

В данном примере рабочие разделены на две группы по факторному признаку х – квалификации, которая характеризуется их разрядом. Результативный признак – выработка – варьируется как под его влиянием (межгрупповая вариация), так и за счет других случайных факторов (внутригрупповая вариация). Задача заключается в измерении этих вариаций с помощью трех дисперсий: общей, межгрупповой и внутригрупповой. Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х . Остальная часть общей вариации у вызвана изменением прочих факторов.
В примере эмпирический коэффициент детерминации равен:
или 66,7 %,
Это означает, что на 66,7% вариация производительности труда рабочих обусловлена различиями в квалификации, а на 33,3% – влиянием прочих факторов.
Эмпирическое корреляционное отношение показывает тесноту связи между группировочным и результативными признаками. Рассчитывается как корень квадратный из эмпирического коэффициента детерминации:

Эмпирическое корреляционное отношение , как и , может принимать значения от 0 до 1.
Если связь отсутствует, то =0. В этом случае =0, то есть групповые средние равны между собой и межгрупповой вариации нет. Значит группировочный признак – фактор не влияет на образование общей вариации.
Если связь функциональная, то =1. В этом случае дисперсия групповых средних равна общей дисперсии (), то есть внутригрупповой вариации нет. Это означает, что группировочный признак полностью определяет вариацию изучаемого результативного признака.
Чем ближе значение корреляционного отношения к единице, тем теснее, ближе к функциональной зависимости связь между признаками.
Для качественной оценки тесноты связи между признаками пользуются соотношениями Чэддока.

В примере , что свидетельствует о тесной связи между производительностью труда рабочих и их квалификацией.

Расчеты средней арифметической могут быть громоздкими, если варианты (значения признака) и веса имеют очень большие или очень малые значения и затрудняется сам процесс подсчета. Тогда для простоты счета используется ряд свойств средней арифметической:

1) если уменьшить (увеличить) все варианты на какое-либо произвольное число А , то новая средняя уменьшится (увеличится) на то же число А , т. е. изменится на ±А ;

2) если уменьшить все варианты (значения признака) в одинаковое число раз (К ), то средняя уменьшится во столько же раз, а при увеличении в (К ) раз – увеличится в (К ) раз;

3) если уменьшить или увеличить веса (частоты) всех вариант на какое-либо постоянное число А , то средняя арифметическая не изменится;

4) сумма отклонений всех вариант от общей средней равна нулю.

Перечисленные свойства средней арифметической позволяют в случае необходимости упрощать расчеты путем замены абсолютных частот относительными, уменьшать варианты (значения признака) на какое-либо число А , сокращать их в К раз и рассчитывать среднюю арифметическую из уменьшенных вариант, а затем переходить к средней первоначального ряда.

Способ исчисления средней арифметической с использованием ее свойств известен в статистике как «способ условного нуля» , или «условной средней» , или как «способ моментов».

Кратко этот способ можно записать в виде формулы

Если уменьшенные варианты (значения признака ), обозначить через , то приведенную выше формулу можно переписать в виде .

При использовании формулы для упрощения исчисления средней арифметической взвешенной интервального ряда при определении величины какого-либо числа А используют такие приемы его определения.

Величина А равна величине:

1) первого значения средней величины интервала (продолжим на примере задачи, где млн дол., а .

Расчет средней из уменьшенных вариант

Интервалы Среднее значение интервала Число заводов, f Произведение
До 2 1,5 0 (1,5–1,5)
2–3 2,5 1 (2,5–1,5)
3–4 3,5 2 (3,5–1,5)
4–5 4,5 3 (4,5–1,5)
5–6 5,5 4 (5,5–1,5)
Свыше 6 6,5 5 (6,5–1,5)
Итого: 3,7

,

2) величину А берем равной величине среднего значения интервала с наибольшей частотой повторений, в данном случае А = 3,5 при (f = 30), или значение серединной варианты, или наибольшей варианты (в данном случае наибольшее значение признака Х = 6,5) и деленное на размер интервала (в данном примере 1).

Расчет средней при А = 3,5, f = 30, К = 1 на том же примере.

Расчет средней способом моментов

Интервалы Среднее значение интервала Число заводов, f Произведение
До 2 1,5 (1,5 – 3,5) : 1 = –2 –20
2–3 2,5 (2,5 – 3,5) : 1 = –1 –20
3–4 3,5 (3,5 – 3,5) : 1 = 0
4–5 4,5 (4,5 – 3,5) : 1 = 1
5–6 5,5 (5,5 – 3,5) : 1 = 2
Свыше 6 6,5 (6,5 – 3,5) : 1 = 3
Итого: 3,7

; ; ;

Способ моментов, условного нуля или условной средней заключается в том, что при сокращенном способе расчета средней арифметической мы выбираем такой момент, чтобы в новом ряду одной из значений признака , т. е. приравниваем и отсюда выбираем величину А и К .

Надо иметь в виду, что если (Х А ) : К , где К – равная величина интервала, то полученные новые варианты образуют в равноинтервальном ряду ряды натуральных чисел (1, 2, 3 и т. д.) положительных вниз и отрицательных вверх от нуля. Среднюю арифметическую из этих новых вариант называют моментом первого порядка и выражают формулой

.

Чтобы определить величину средней арифметической, нужно величину момента первого порядка умножить на величину того интервала (К ), на который делим все варианты, и прибавить к полученному произведению величину варианты (А ), которую вычитали.

;

Таким образом, способом моментов или условного нуля рассчитать среднюю арифметическую из вариационного ряда, если ряд равноинтервальный, значительно легче.

Мода

Мода – есть величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности.

Для дискретных рядов распределения модой будет значение варианты с наибольшей частотой.

Пример. При определении плана по производству мужских туфлей фабрикой было произведено изучение покупательского спроса по результатам продажи. Распределение проданной обуви характеризовалось следующими показателями:

Наибольшим спросом пользовалась обувь 41 размера и составила 30% от проданного количества. В этом ряду распределения М 0 = 41.

Для интервальных рядов распределения с равными интервалами мода определяется по формуле

.

Прежде всего, необходимо найти интервал, в котором находится мода, т. е. модальный интервал.

В вариационном ряду с равными интервалами модальный интервал определяется по наибольшей частоте, в рядах с неравными интервалами – по наибольшей плотности распределения, где: – величина нижней границы интервала, содержащего моду; – частота модального интервала; – частота интервала, предшествующего модальному, т. е. предмодального; – частота интервала, следующего за модальным, т. е. послемодального.

Пример расчета моды в интервальном ряду

Дана группировка предприятий по численности промышленно-про­из­вод­ственного персонала. Найти моду. В нашей задаче наибольшее число предприятий (30) имеет группировка с численностью работающих от 400 до 500 человек. Следовательно, этот интервал является модальным интервалом ряда распространения с равными интервалами. Введем следующие обозначения:

Подставим эти значения в формулу вычисления моды и произведем расчет:

Таким образом, мы определили значение модальной величины признака, заключенного в этом интервале (400–500), т. е. М 0 = 467 чел.

Во многих случаях при характеристике совокупности в качестве обобщающего показателя отдается предпочтение моде , а не средней арифметической. Так, при изучении цен на рынке фиксируется и изучается в динамике не средняя цена на определенную продукцию, а модальная. При изучении спроса населения на определенный размер обуви или одежды представляет интерес определение модального номера, а не средний размер, который вообще не имеет значения. Если средняя арифметическая близка по значению к моде, значит она типична.

ЗАДАЧИ ДЛЯ РЕШЕНИЯ

Задача 1

На сортосеменной станции при определении качества семян пшеницы было получено следующее определение семян по проценту всхожести:

Определить моду.

Задача 2

При регистрации цен в часы наиболее оживленной торговли у отдельных продавцов были зарегистрированы следующие цены фактической продажи (дол. за кг):

Картофель: 0,2; 0,12; 0,12; 0,15; 0,2; 0,2; 0,2; 0,15; 0,15; 0,15; 0,15; 0,12; 0,12; 0,12; 0,15.

Говядина: 2; 2,5; 2; 2; 1,8; 1,8; 2; 2,2; 2,5; 2; 2; 2; 2; 3; 3; 2,2; 2; 2; 2; 2.

Какие цены на картофель и говядину являются модальными?

Задача 3

Имеются данные о заработной плате 16 слесарей цеха. Найти модальную величину заработной платы.

В долларах: 118; 120; 124; 126; 130; 130; 130; 130; 132; 135; 138; 140; 140; 140; 142; 142.

Расчет медианы

Медианой в статистике называется варианта, расположенная в середине вариационного ряда. Если дискретный ряд распределения имеет нечетное число членов ряда, то медианой будет варианта, находящаяся в середине ранжированного ряда, т. е. к сумме частот прибавить 1 и все разделить на 2 – результат и даст порядковый номер медианы.

Если в вариационном ряду четное число вариант, тогда медианой будет половина суммы двух серединных вариант.

Для нахождения медианы в интервальном вариационном ряду определяем сначала медианный интервал по накопленным частотам. Таким интервалом будет такой, кумулятивная (накопленная) частота которого равна или превышает половину суммы частот. Накопленные частоты образуются путем постепенного суммирования частот, начиная от интервала с наименьшим значением признака.

Расчет медианы в интервальном вариационном ряду

Интервалы Частоты (f ) Кумулятивные (накопленные) частоты
60–70 10 (10)
70–80 40 (10+30)
80–90 90 (40+50)
90–100 15 (90+60)
100–110 295 (150+145)
110–120 405 (295+110)
120–130 485 (405+80)
130–140 500 (485+15)
Сумма: f = 500

Половина суммы накопленных частот в примере равна 250 (500: 2). Следовательно, медианным интервалом будет интервал со значением признака 100–110.

До этого интервала сумма накопленных частот составила 150. Следовательно, чтобы получить значение медианы, необходимо прибавить еще 100 единиц (250 – 150). При определении значения медианы предполагается, что значение признака в границах интервала распределяется равномерно. Следовательно, если 145 единиц, находящихся в этом интервале, распределить равномерно в интервале, равно 10, то 100 единицам будет соответствовать величина:

10: 145 ´ 100 = 6,9.

Прибавив полученную величину к минимальной границе медианного интервала, получим искомое значение медианы:

Или медиану в вариационном интервальном ряду можно исчислить по формуле:

,

где – величина нижней границы медианного интервала (); – величина медианного интервала ( =10); – сумма частот ряда (численность ряда 500); – сумма накопленных частот в интервале, предшествующем медианному ( = 150); – частота медианного интервала ( = 145).

Различают три вида средних величин: мода (М0), медиана (Ме), сред­няя арифметическая (М).

Они не могут подменить друг друга и лишь в со­вокупности достаточно полно и в сжатой форме представляют собой осо­бенности вариационного ряда.

Мода (Мо) - наиболее часто встречающаяся в ряду распределения варианта. Она дает представление о центре распределения вариационного ряда. Используется:

Для определения центра распределения в открытых вариационных рядах

Для определения среднего уровня в рядах с резко асимметричным рас­пределением

Медиана - это серединная варианта, центральный член ранжирован­ного ряда. Название медиана взято из геометрии, где так именуется линия, делящая сторону треугольника на две равные части.

Медиана применяется:

Для определения среднего уровня признака в числовых рядах с нерав­ными интервалами в группах

Для определения среднего уровня признака, когда исходные данные представлены в виде качественных признаков и когда единственным способом указать некий центр тяжести совокупности является указа­ние варианты (группы вариант), которая занимает центральное поло­жение

При вычислении некоторых демографических показателей (средней продолжительности предстоящей жизни)

При определении наиболее рационального места расположения учре­ждений здравоохранения, коммунальных учреждений и т. п. (имеется в виду учет оптимальной удаленности учреждений от всех объектов обслуживания)

В настоящее время очень распространены различные опросы (марке­тинговые, социологические и др.), в которых опрашиваемых просят выста­вить баллы изделиям, политикам и т. п. Затем из полученных оценок рас­считывают средние баллы и рассматривают их как интегральные оценки, выставленные коллективом опрошенных. При этом обычно для определе­ния средних показателей применяют среднее арифметическое. Однако та­кой способ на самом деле применять нельзя. Обоснованным в этом случае является использование в качестве средних баллов медианы или моды.

Для характеристики среднего уровня признака наиболее часто ис­пользуется в медицине средняя арифметическая величина (М).

Средняя арифметическая величина - это общая количественная характеристика определенного признака изучаемых явлений, составляю­щих качественно однородную статистическую совокупность.

Различают среднюю арифметическую простую и взвешенную.

Средняя арифметическая простая вычисляется для не сгруппиро­ванного вариационного ряда путем суммирования всех вариант и делением этой суммы на общее количество вариант, входящих в вариационный ряд.

Вычисляется средняя арифметическая простая по формуле:

М - средняя арифметическая взвешенная,

∑Vp - сумма произведений вариант на их частоты,

n - число наблюдений.

Помимо указанного метода прямого расчета средней арифметической взвешенной, существуют другие методы, в частности, способ моментов при котором несколько упрощены арифметические расчеты.

Расчет средней арифметической способом моментов проводится по формуле:

М = А + ∑dp
n

А - условная средняя (чаще всего в качестве условной средней берет­ся мода М0)

d - отклонение каждой варианты от условной средней (V-A)

∑dp - сумма произведений отклонений на их частоту.

Порядок вычисления представлен в таблице (за условную среднюю принимаем М0 = 76 ударам в минуту).

частота пульса V Р d (V-A) dp
-16 -16
-14 -28
-12 -36
-10 -30
-8 -24
-6 -54
-4 -24
-2 -14
n= 54 | ∑dp= -200

где i - интервал между группами.

Порядок вычисления представлен в табл. (за условную среднюю при­нимаем М 0 = 73 ударам в минуту, где i = 3)

Определение средней арифметической способом моментов

n = 54 ∑dp = -13

М = А + ∑dp = 73+ -13*3 = 73 - 0,7=72,3 (ударов в минуту
n

Таким образом, полученное значение средней арифметической вели­чины по способу моментов идентично таковому, найденному обычным способом.