Хроматическая дисперсия. Дисперсия сигналов в оптических волокнах Влияние хроматической дисперсии на характеристики передачи

При взаимодействии электромагнитной волны со связанными электронами диэлектрика отклик среды зависит от оптической частоты Это свойство, называемое хроматической дисперсией, проявляется как частотная зависимость показателя преломления и Возникновение хроматической дисперсии связано с характерными частотами, на которых среда поглощает электромагнитное излучение вследствие осцилляций связанных электронов. Вдали от резонансных частот среды поведение показателя среды хорошо описывается уравнением Селлмейера

где - резонансная частота и величина резонанса. Суммирование в уравнении (1.2.6) производится по всем резонансным частотам вещества, которые вносят вклад в интересующей нас области спектра. В случае оптических волокон параметры определяются путем подгонки измеренных дисперсионных критериев к уравнению (1.2.6) при они зависят от состава сердцевины . Для объемного кварцевого стекла эти параметры такие: мкм, где и с - скорость света в вакууме .

Дисперсия в волоконном световоде имеет определяющее значение при распространении коротких оптических импульсов, так как различные спектральные компоненты спектра импульса распространяются с разными скоростями Даже в тех случаях, когда нелинейные эффекты не важны, дисперсионное уширение импульса может быть вредным для оптических линий связи. В нелинейном режиме сочетание дисперсии и нелинейности может привести к качественно другой картине, которая обсуждается в следующих главах. При математическом описании эффекты дисперсии в световоде учитываются разложением постоянной распространения моды в ряд Тейлора вблизи несущей частоты

Как показано в разд. 2.3, огибающая импульса движется с групповой скоростью а параметр определяет уширение импульса. С показателем преломления и его производными параметры связаны соотношениями

где групповой показатель преломления.

На рис. 1.4 и 1.5 показаны зависимости от длины волны X для кварцевого стекла, полученные с использованием уравнений (1.2.6), (1.2.9), (1.2.10). Замечательно то. что стремится к нулю на длине волны приблизительно 1,27 мкм и становится отрицательным для больших длин волн. Длина волны, на которой часто называется длиной волны нулевой дисперсии Тем не менее следует отметить, что при дисперсия не равна нулю. Описание распространения импульсов вблизи требует включения в разложение (1.2.7) кубического слагаемого. Такие дисперсионные эффекты более высокого порядка могут искажать сверхкороткие оптические импульсы как в линейном, так и в нелинейном режимах .

Рис. 1.4. Зависимость показателя преломления и группового показателя преломления кварцевого стекла от длины волны.

Рис. 1.5. Зависимость Для кварцевого стекла от длины волны. Дисперсионный параметр вблизи 1,27 мкм. Параметр представлен как функция при мкм.

Однако их рассмотрение необходимо только тогда, когда длина волны импульса X приближается к значению в пределах нескольких нанометров.

Кривые, представленные на рис. 1.4 и 1.5, построены для объемного кварцевого стекла. Поведение дисперсии для реальных стеклянных световодов, вообще говоря, отличается от показанного на этих рисунках по следующим двум причинам. Во-первых, сердцевина световода может иметь небольшое количество примесей, таких, как Уравнение (1.2.6) в этом случае следует использовать с параметрами, соответствующими определенному количеству примесных уровней . Во-вторых, наличие волноводной структуры несколько уменьшает эффективный показатель преломления моды по сравнению с показателем преломления в объемном материале и причем это уменьшение зависит от частоты . В результате, чтобы получить полную дисперсию в волоконном световоде, к материальной дисперсии нужно добавить волноводную компоненту. Вообще говоря, волноводный вклад в пренебрежимо мал во всей спектральной области, за исключением области вблизи длины волны нулевой дисперсии где волноводная дисперсия и материальная дисперсия становятся сравнимыми. Основной эффект волноводного вклада состоит в небольшом смещении в длинноволновую область; мкм для типичных световодов. На рис. 1.6 показана измеренная полная дисперсия в одномодовом волоконном световоде . Для количественного выражения дисперсии используется дисперсионный параметр обычно используемый в литературе по волоконной оптике вместо Следующее соотношение

Рис. 1.6. Измеренная зависимость дисперсионного параметра D одномодового световода от длины волны. Длина волны нулевой дисперсии смещена к длине волны 1,312 мкм вследствие вклада волноводной дисперсии в полную дисперсию световода .

устанавливает связь между

Интересный чертой волноводной дисперсии является то, что ее вклад в (или зависит от параметров волокна: радиуса сердцевины а и разности показателей преломления сердцевины и оболочки Этот факт может использоваться для смещения длины волны нулевой дисперсии к 1,55 мкм, где световоды имеют минимальные потери. Такие световоды со смещенной дисперсией могут в перспективе применяться в оптических системах связи. Можно создавать волоконные световоды с весьма пологой дисперсионной кривой, имеющие малую дисперсию в широком спектральном диапазоне мкм. Это достигается путем использования многих слоев оболочки. На рис. 1.7 показаны измеренные дисперсионные кривые для двух таких световодов с несколькими оболочками, имеющих двух- или трехслойные оболочки вокруг сердцевины. Для сравнения дисперсионная кривая для световода с однослойной оболочкой также показана (штриховой линией). Световод с четырехслойной оболочкой характеризуется низкой дисперсией нм) в широкой спектральной области от 1,25 до 1,65 мкм. Световоды с модифицированными дисперсионными характеристиками полезны для изучения нелинейных эффектов, когда в эксперименте требуются специальные дисперсионные свойства.

Нелинейные эффекты в оптических волокнах могут быть качественно совершенно разными в зависимости от знака дисперсионных

Рис. 1.7. Зависимость дисперсионного параметра от длины волны для трех разных типов волоконных световодов. Метки относятся соответственно к световодам с одной, двумя и четырьмя оболочками.

параметров или Поскольку

параметр обычно называют дисперсией групповых скоростей. На длинах волн параметр (см. рис. 1.5), и говорят, что световод обладает нормальной дисперсией. В режиме нормальной дисперсии высокочастотные компоненты (сдвинутые в синюю область) спектра оптического импульса распространяются медленнее, чем низкочастотные компоненты. Обратная ситуация возникает в режиме так называемой аномальной дисперсии, т. е. когда Как видно из рис. 1.5, стеклянные волоконные световоды обладают аномальной дисперсией в области длин волн, больших длины волны нулевой дисперсии Режим аномальной дисперсии представляет значительный интерес для изучения нелинейных эффектов, так как в этом режиме в оптических волокнах могут существовать солитоны - оптические импульсы, для которых дисперсионные и нелинейные эффекты в точности компенсируют друг друга .

3.3 ОПТИЧЕСКОЕ ВОЛОКНО

Можно выделить четыре основные явления в оптическом волокне, ограничивающие характеристики систем WDM - это хроматическая дисперсия, поляризационная модовая дисперсия первого и второго порядка и нелинейные оптические эффекты.

3.3.1 Хроматическая дисперсия

Важной оптической характеристикой стекла, используемого при изготовления волокна, является дисперсия показателя преломления, проявляющаяся в зависимости скорости распространения сигнала от длины волны - материальная дисперсия. Кроме этого, при производстве одномодового волокна, когда кварцевая нить вытягивается из стеклянной заготовки, в той или иной степени возникают отклонения в геометрии волокна и в радиальном профиле показателя преломления. Сама геометрия волокна вместе с отклонениями от идеального профиля также вносит существенный вклад в зависимость скорости распространения сигнала от длины волны, это - волноводная дисперсия.

Совместное влияние материальной и волноводной дисперсий называют хроматической дисперсией волокна, рис. 3.16.

Рис.3.16 Зависимость хроматической дисперсии от длины волны

Явление хроматической дисперсии ослабевает по мере уменьшения спектральной ширины излучения лазера. Даже если бы можно было использовать идеальный источник монохроматического излучения с нулевую шириной линии генерации, то после модуляции информационным сигналом произошло бы спектральное уширение сигнал, и тем больше уширение, чем больше скорость модуляции. Есть и другие факторы, приводящие к спектральному уширению излучения, из которых можно выделить чирпирование источника излучения.

Таким образом, исходный канал представлен не единственной длиной волны, а группой длин волн в узком спектральном диапазоне - волновым пакетом. Так как различные длины волн распространяются с разными скоростями (или точнее, с разными групповыми скоростями), то оптический импульс, имеющий на входе линии связи строго прямоугольную форму, по мере прохождения по волокну будет становиться все шире и шире. При большом времени распространения в волокне этот импульс может смешаться с соседними импульсами, затрудняя точное их восстановление. С увеличением скорости передачи и длины линии связи влияние хроматической дисперсии возрастает.

Хроматическая дисперсия, как уже говорилось, зависит от материальной и волноводной составляющих. При некоторой длине волны λ o хроматическая дисперсия обращается в ноль - эту длину волны называют длиной волны нулевой дисперсии.

Одномодовое кварцевое волокно со ступенчатым профилем показателя преломления обладает нулевой дисперсией на длине волны 1310 нм. Такое волокно часто называют волокном с несмещенной дисперсией.

Волноводная дисперсия в первую очередь определяется профилем показателя преломления сердцевины волокна и внутренней оболочки. В волокне со сложным профилем показателя преломления, изменяя соотношение между дисперсией среды и дисперсией волновода, можно не только сместить длину волны нулевой дисперсию, но и подобрать нужную форму дисперсионной характеристики, т.е. форму зависимости дисперсии от длины волны.

Форма дисперсионной характеристики является ключевой для систем WDM, в особенности, по волокну со смещенной дисперсией (Рек. ITU-T G.653).

Кроме параметра λ o используют параметр S o , описывающий наклон дисперсионной характеристики на длине волны λ o , рис. 3.17. В общем случае, наклон на других длинах волн отличается от наклона при длине волны λ o . Текущее значение наклона S o определяет линейную составляющую дисперсии в окрестности λ o .

Рис. 3.17 Основные параметры зависимости хроматической дисперсии от длины волны: λ o - длина волны нулевой дисперсии и S o - наклон дисперсионной характеристики в точке нулевой дисперсии

Хроматическую дисперсию τ chr (обычно измеряется в пс) можно рассчитать по формуле

τ chr = D(λ) · Δτ · L ,

где D(λ) - коэффициент хроматической дисперсии (пс/(нм*км)) , а L - протяженность линии связи (км). Заметим, что данная формула не точна в случае ультра узкополосных источников излучения.

На рис. 3.18 раздельно показаны зависимости волноводной дисперсии для волокна с несмещенной (1) и смещенной (2) дисперсией и материальной дисперсии от длины волны.

Рис. 3.18 Зависимость дисперсии от длины волны (хроматическая дисперсия определяется как сумма материальной и волноводной дисперсий.)

Хроматическая дисперсия системы передачи чувствительна к:
увеличению длины и числа участков линии связи;
увеличению скорости передачи (т.к. увеличивается эффективная ширина линии генерации источника).

На нее в меньшей степени влияют:
уменьшение частотного интервала между каналами;
увеличение числа каналов.

Хроматическая дисперсия уменьшается при:
уменьшении абсолютного значения хроматической дисперсии волокна;
компенсации дисперсии.

В системах WDM с обычным стандартным волокном (Рек. ITU-T G.652) хроматической дисперсии следует уделять особое внимание, так как она велика в области длины волны 1550 нм.

Общие положения

Дисперсией оптического волокна называют рассеяние во времени спектральных или модовых составляющих оптического сигнала. Основная причина дисперсии - разные скорости распространения отдельных составляющих оптического сигнала. Дисперсия проявляется как уширение, увеличение длительности распространяющихся по волокну

оптических импульсов.

В общем случае указанная величина уширения оптического импульса ∆δ определяется непосредственно значениями среднеквадратической длительности на передающей δin и δout соответственно:

В свою очередь дисперсия создает переходные помехи, приводит к межсимвольной интерференции и, соответственно, ошибкам при приеме сигналов, что ограничивает скорость передачи в линии или, иными словами, длину регенерационного участка (РУ).

Межмодовая дисперсия

Межмодовая дисперсия характерна только для многомодовых оптических волокон. Она возникает в многомодовых световодах из-за наличия большего числа мод с различным временем распространения и различной длины пути, который отдельные моды проходят в сердцевине волокна (рис. 1.10 - 1.11).

Полоса пропускания типовых градиентных многомодовых оптических волокон характеризуется коэффициентом широкополосности ∆F, МГц-км, значение которого указывается в паспортных данных на длинах волн, соответствующих первому и второму окнам прозрачности. Стандартные полосы пропускания типовых многомодовых оптически волокон составляют 400...2000 МГц-км.

Реализация высокоскоростных многомодовых ВОЛП требует применения одномодовых лазеров в качестве источников излучения оптоэлектронных модулей ОСП, обеспечивающих скорость передан данных свыше 622 Мбит/с (STM-4). В свою очередь, основным фактором искажения оптических сигналов одномодовых ОСП, распространяющихся по волокнам многомодовых ВОЛП является уже не многомодовая дисперсия, а дифференциальная модовая задержка (DMD). DMD носит случайный характер и зависит непосредственно от параметров конкретной пары «источник-волокно», а также от условий ввода излучения с выхода лазера в линейный тракт многомодовой ВОЛП. Поэтому в паспортных данных на новый тип многомодовых волоконных световодов - волокон, оптимизированных для работы с лазерами - помимо значений коэффициента широкополосности, позволяющем оценить величину межмодовой дисперсии при передаче сигналов многомодовых ОСП по многомодовым ВОЛП, также указываются дополнительные сведения, полученные в результате измерений DMD в процессе изготовления волокна, - например, предельная длина ЭКУ одномодовой ОСП Gigabit Ethernet.

Очевидно, что в одномодовых волоконных световодах межмодовая дисперсия не проявляется. Одними из основных факторов искажений сигналов, распространяющихся по одномодовым оптическим волокнам являются хроматическая и поляризационная модовая дисперсии

Хроматическая дисперсия

Хроматическая дисперсия Dch обусловлена конечной шириной спектра излучения лазера и различием скоростей распространена отдельных спектральных составляющих оптического сигнала. Хроматическая дисперсия складывается из материальной и волноводной дисперсии, и проявляется как в одномодовых, так и многомодовых оптических волокнах:

Материальная дисперсия

Материальная дисперсия Dmat определяется дисперсионными характеристиками материалов, из которых изготовлена сердцевина oптического волокна - кварца и легирующих добавок. Спектральная зависимость показателя преломления материала сердцевины и оболочки (рис 1.24) вызывает изменения с длиной волны и скорости распространения.

Достаточно часто данная зависимость описывается известным уравнением Селлмейера, которое имеет следующий вид :

(1.28)

Где Aj и Вj – коэффициенты Селлмейра, соответствующие заданному типу материала, легирующей примеси и ее концентрации.

Рис. 1.24. Спектральная зависимость показателя преломления чистого кварца (сплошная кривая) и кварца, легированного 13,5% германием (штриховая кривая)

Очевидно, что эту характеристику для кварцевых волокон можно считать неизменной. Материальная дисперсия характеризуется коэффициентом Dmat пс/(нмкм), который определяется из известного соотношения:



В качестве примера, на рис. 1.25 представлены спектральные характеристики коэффициентов материальной дисперсии чистого кварца и кварца, легированного 13,5% германия.

Очевидно, что характер проявления материальной дисперсии зависит не только от ширины спектра излучения источника, но и от его центральной рабочей длины волны. Так, например, в области третьего окна прозрачности λ=1550 нм менее длинные волны распространяются быстрее, чем более длинные, а материальная дисперсия больше нуля (Dmat>0). Данный диапазон получил название области нормальной или положительной дисперсии (рис. 1.26 (б)).

В области первого окна прозрачности λ=850 нм, напротив, более длинные волны распространяются быстрее, чем короткие, а материальной дисперсии соответствует отрицательное значение (Dmat<0) Данный диапазон называется областью аномальной или отрицательной дисперсии (рис. 1.26 (в)).

Рис. 1.26. Хроматическая дисперсия: (а) импульс на входе ВОЛП; (б) нормальная

дисперсия; (в) аномальная дисперсия; (г) область нулевой дисперсии.

В некоторой точке спектра, называемой точкой нулевой материальной дисперсии λ0, происходит совпадение, при этом и короткие, и длинные волны распространяются с одинаковой скоростью (рис. 1.26 (г)). Так, например, для чистого кварца SiО2 точка нулевой материальной дисперсии соответствует длине волны 1280 нм (рис. 1.25).

Прежде чем рассматривать понятие анализатора хроматической дисперсии, обозначим, какие бывают виды дисперсий в оптическом волокне, что такое хроматическая дисперсия (ХД), из каких составляющих она слагается, какие существуют методы ее измерения.

Виды дисперсий

Различают следующие виды дисперсий в световоде:

    модовая или межмодовая;

    хроматическая (материальная, волноводная);

    поляризационная.

Их сумма образует полную дисперсию в оптоволокне.

Хроматическая дисперсия

Хроматическая дисперсия оказывает влияние на производительность системы. Явление хроматической дисперсии возникает по причине того, что распространение длин волн в оптическом волокне происходит с немного отличной друг от друга скоростью. Как результат, возникает затянутый, а потому неэффективный импульс. Когда значение ХД слишком большое, происходят перекрестная модуляция и потери сигнала. В то же время небольшие контролируемые значения хроматической дисперсии нужны, чтобы устранять нежелательные нелинейные эффекты, такие как четырехволновое смешение.

Для стекла, которое используется при изготовлении оптического волокна, важная характеристика – дисперсия показателя преломления (материальная дисперсия). Она проявляется в зависимости скорости распространения оптического сигнала от длины волны. Помимо того, в момент производства при вытягивании кварцевой нити из стеклянной заготовки возникают различной степени отклонения как по геометрии волокна, так и в радиальном профиле показателя преломления. Геометрия + отклонения от идеального профиля вносят свой существенный вклад в вышеназванную зависимость скорости распространения оптического сигнала от длины волны – это уже называется волноводной дисперсией.

Хроматическая дисперсия является совместным влиянием материальной и волноводной дисперсий.

ХД наблюдается при распространении светового сигнала как в одно-, так и в многомодовом волокне. Но наиболее четко проявляется она в одномоде по причине отсутствия в нем межмодой дисперсии.

Методы измерения ХД

Стандартом ГОСТ Р МЭК 60793-1-42-2013 определяются следующие методы:

    фазового сдвига;

    спектральной групповой задержки во временной области;

    дифференциального фазового сдвига;

    интерферометрии.

Анализатор хроматической дисперсии

Анализаторы ХД можно условно разделить на стационарные и полевые.

В настоящее время измерение хроматической дисперсии становится все более критичным для телекомкомпаний и провайдеров, ищущих способы улучшения своих систем путем модернизации их скорости передачи. Современные анализаторы хроматической дисперсии отличаются высокой производительностью, позволяя проводить все виды измерений ХД, в том числе в полевых условиях.

Например, анализатор хроматической дисперсии FTB-5800 производства компании EXFO для всестороннего тестирования ХД в полевых условиях определяет ее посредством метода фазового сдвига . От источника, расположенного с одной стороны линии связи, в оптическое волокно посылается модулированный световой сигнал. На другую сторону данной линии связи различные длины волн приходят с разными сдвигами фаз. Путем измерения этих сдвигов происходит вычисление соответствующих временных задержек и определение значения ХД.

Другие методы измерения ХД

Различают также такой метод, как измерение времени полета (FOTR-168). Например, на нем основана измерительная система CD-OTDR на базе , что позволяет проводить оценку хроматической дисперсии отдельных волокон. При тестировании используется одно волокно и множество длин волн, что определяет увеличение точности измерения, а также сокращение времени тестирования.

Еще один метод – импульсный , регламентированный стандартом ITUT G650. Импульсный метод характеризуется прямым измерением задержки импульсов света с различными длинами волн при прохождении через оптическое волокно заданной длины.

Импульсы света, последовательность которых определяет информационный поток, в процессе распространения расплываются. При достаточно большом расширении импульсы начинают перекрываться, так что становится невозможным их выделение на приёме.

Дисперсия τ - это рассеяние во времени спектральных и модовых составляющих оптического сигнала, приводящее к расширению длительности импульса на приёме.

Дисперсия определяется как квадратичная разность длительности импульсов на выходе и входе кабеля:

τ(l) = , пс/км. (2.8)

Чем меньше значение дисперсии, тем больше ширина полосы пропускания ОВ, тем больший поток информации можно передать по ОВ.

Максимальная ширина полосы пропускания на 1 километр кабеля обратно пропорциональна дисперсии и приближённо равна:

F = 0, 44/ τ , Гц (2.9)

Дисперсию классифицируют по причинам происхождения следующим образом:

Рисунок 2.11 Виды дисперсии

Результирующая дисперсия определяется из формулы:


Материальная дисперсия обусловлена зависимостью показателя преломления оптического волокна от длины волны λ .

Волноводная дисперсия обусловлена зависимостью коэффициента распространения моды от длины волны λ . Волноводная дисперсия возникает из-за ограничения света направляющей структурой (волокном). Тогда как почти вся энергия в многомодовом ОВ сконцентрирована в относительно большой сердцевине, в одномодовых ОВ свет распространяется и в сердцевине и в оболочке. Единственная направляемая мода может рассматриваться как распространяющаяся со скоростью, определяемой эффективным показателем преломления, большим чем показатель преломления оболочки, но меньшим показателя сердцевины. С ростом длины волны всё больше энергии распространяется в оболочке с малым показателем преломления. В результате получается расширение импульса, зависящее от структуры волокна, т. е.волноводная дисперсия.

    Поляризационно-модовая дисперсия (ПМД) - это дисперсия, вызываемая разностью в скоростях распространения двух основных ортогонально-поляризованных мод, существующих в одномодовом волокне.

Рисунок 2.12 Поляризационно-модовая дисперсия

Наличие ПМД приводит к тому, что результирующий выходной импульс света уширяется по сравнению с входным. Луч света от источника излучения попадает на вход ОВ. При этом возникает явление двойного лучепреломления . Это означает, что внутри ОВ образуется две волны (моды), которые поляризуется в двух ортогональных (взаимно-перпендикулярных) плоскостях и распространяется в виде двух мод одной волны. Из-за физической асимметрии показателя преломления ОВ эти моды одной волны движутся с разной скоростью.

ПМД также может быть возникать в местах соединения волокон или изгибах. ПМД влияет на работу ВОЛС так же, как и хроматическая дисперсия, но механизм уширения импульсов в этих случаях различен.

Существенным отличием ПМД от хроматической дисперсии является тот факт, что влияние хроматической дисперсии в линии можно компенсировать, в то время как методов компенсации влияния ПМД в настоящее время не существует. В прошлом (лет 15 назад) влияние ПМД не принималось во внимание, поскольку скорости передачи, а также расстояния между регенераторами в ВОЛС были относительно невелики. В настоящее время, когда скорости передачи достигают сотен Гбит/с, а расстояния между оптическими регенераторами в ВОЛС - сотен километров, ПМД становится ограничивающим фактором при разработке ВОЛС.

В многомодовых ступенчатых волокнах определяющей является межмодовая дисперсия , которая обусловлена наличием большого числа распространяющихся мод и различиями времен их распространения по волокну, обычно в многогодовом ОВ τ =20÷50 нс/км.

В градиентных ОВ происходит выравнивание времени распространения различных мод и определяющей является материальная дисперсия , τ =3÷5 нс/км.

В ступенчатых одномодовых ОВ проявляется хроматическая (волноводная и материальная) дисперсия , но они почти равны по абсолютной величине и противоположны по фазе в широком спектральном диапазоне (Рис.13) при λ = 1,2 ÷ 1,7 мкм. В одномодовых ОВ τ = 5 -17 пс/км.

Возникновение хроматической дисперсии в материале световода обусловлено тем, что оптический источник, возбуждающий вход ОВ (светоизлучающий диод – СИД или лазерный диод – ЛД), формирует световые импульсы, имеющие непрерывный волновой спектр определенной ширины (например, для СИД это примерно 35-60 нм, для многомодовых лазерных диодов (ММЛД) – 2-5 нм, для одномодовых ЛД (ОМЛД) – 0,01-1нм). Различные спектральные компоненты импульса распространяются с разными скоростями и приходят в определенную точку (к концу волокна) в разное время, приводя к уширению импульса на выходе.

В области от 800 нм до 1270 нм более длинные волны (более красные) движутся по ОВ быстрее по сравнению с более короткими (более голубыми) длинами волн (рисунок 2.13). Например, волны длиной 860 нм распространяются быстрее по стеклянному волокну, чем волны длиной 850 нм. Это связано с тем, что коэффициент преломления стекла в диапазоне от 800 нм до 1270 нм уменьшается с ростом длины волны, (этим же самым явлением объясняется возникновение радуги). Такая дисперсия называется положительной .

В области от 1270 нм до 1700 нм ситуация меняется: более короткие волны движутся быстрее по сравнению с более длинными; волна 1560 нм движется медленнее, чем волна 1540 нм, т.е. коэффициент преломления стекла в диапазоне от 1270 нм до 1700 нм увеличивается с ростом длины волны. Это явление называют аномальной (отрицательной) дисперсией. Отрицательная дисперсия выражается в том, что более «медленные» спектральные составляющие импульса ускоряются, а «быстрые», наоборот замедляются. В некоторой точке спектра происходит совпадение, при этом более голубые и более красные длины волн движутся с одной и той же скоростью. Это совпадение скоростей происходит на длине волны примерно 1270 нм, на этой длине волны материальная дисперсия равна нулю (См. рисунок 2.13 и таблицу 2.1).

Из рисунка 2.13 видно, что на определённой длине волны материальная и волноводная дисперсия противоположны по знаку и равны по величине, т. е. взаимно компенсируются. На этой длине волны хроматическая дисперсия, являющаяся суммой материальной и волноводной дисперсий, равна нулю. Для ОВ эта длина волны - порядка 1312 нм , её называют длиной волны нулевой дисперсии , Таким образом, для одномодового кварцевого волокна хроматическая дисперсия положительна для длин волн λ <1312 нм и отрицательна для длин волн λ >1312 нм, а в окрестности λ = 1312 нм она нулевая.

Таблица 2.1 – Типичные значения удельной материальной дисперсии одномодового ОВ

, мкм

М (), пс/нм*км

В (), пс/нм*км

Материальная и волноводная дисперсии ОВ пропорциональны ширине спектра излучения источника Δλ. Значения этих дисперсий можно определить через удельную дисперсию по формулам:

; (2.11)

(2.12)

где М(λ) – удельная материальная дисперсия, значения которой представлены в таблице 2.1, В(λ) –удельная волноводная дисперсия, значения которой представлены в таблице 2.1,Δλ – ширина спектральной линии источника излучения.Измеряется хроматическая дисперсия в единицах: пс/км.

Известно, что для кварцевых ОВ минимум затухания соответствует длине волны 1,55 мкм и дальность связи на этой длине волны ограничивается хроматической дисперсией. Как следует из рисунка 2.13, обычное одномодовое волокно не обеспечивает минимум дисперсии для λ=1,55 мкм, поэтому были разработаны ОВ со смещенной (Dispersion Shifted) дисперсией, которые отличаются конфигурацией профиля показателя преломления (треугольный профиль).

Рисунок 2.14 – Зависимость материальной, волноводной и результирующей дисперсии от длины волны для ОВ со смещённой дисперсией

На рисунке 2.14 представлены зависимости материальной, волноводной и результирующей дисперсии от длины волны для ОВ со смещённой дисперсией.

При изменении профиля преломления ОВ волноводная дисперсия увеличивается, и компенсация дисперсии осуществляется на другой длине волны – 1,55 мкм, благодаря чему можно оптимизировать ОВ для работы в третьем окне прозрачности, где затухание ОВ минимально.

В результате исследований волокон со смещенной дисперсией было показано, что наилучшие показатели обеспечивают волокна с треугольным профилем, так как они обладают самофокусирующими свойствами и удерживают распространяющиеся лучи в небольшом объеме, прилегающем к оси ОВ.

Хроматическая дисперсия выбрана международным союзом связистов (INU) в качестве критерия для классификации одномодовых оптических волокон. Согласно этому критерию, существует три типа одномодовых оптических волокон:

    Стандартное одномодовое волокно (тип G.652). Это наиболее ходовой тип волокна, используется в мире с 1988 года. Параметры (потери и дисперсия) этого волокна оптимизированы на длину волны 1310 нм (минимум хроматической дисперсии), оно может использоваться и в диапазоне длин волн 1525...1565 нм, где имеет место абсолютный минимум потерь в волокне.

    Одномодовое волокно со смещенной нулевой дисперсией (тип G.653). Называется так потому, что абсолютный минимум хроматической дисперсии путем выбора специальной формы профиля показателя преломления смещен в диапазон длин волн λ = 1550 нм абсолютного минимума потерь в волокне. Волокно G.653 оптимизировано для высокоскоростной передачи на одной длине волны и имеет ограниченные возможности для передачи на нескольких длинах волн.

    Одномодовое волокно со смещенной в область длин волн λ = 1550 нм ненулевой дисперсией (тип G.655). Волокно оптимизировано для высокоскоростной передачи информации на нескольких длинах волн в диапазоне около 1550 нм. Волокно G.655 разработано для волоконно-оптических систем со спектральным уплотнением каналов - DWDM-систем (при работе этих систем нулевая дисперсия может привести к возникновению нелинейных эффектов в ОВ).